检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 硬盘空间:至少200GB。 昇腾资源规格:Ascend: 8*ascend-snt9b表示昇腾8卡规格。 推荐使用“西南-贵阳一”Region上的昇腾资源。 Step2 创建OBS桶 M
'original_max_position_embeddings': 8192, 'rope_type': 'llama3'} 解决方法:升级transformers版本到4.43.1:pip install transformers --upgrade 问题5:使用Smooth
连接。 更多Screen使用说明可参考Screen User's Manual。 通过py-spy工具分析卡死进程的调用栈并结合代码分析定位卡死问题 本文指导用户通过py-spy工具分析卡死进程的调用栈并结合代码分析定位卡死问题。 在ModelArts Standard控制台,选择“模型训练>训练作业”。
8处理能力。 Manifest文件中文本分类的source数值可以包含中文,其他字段不建议用中文。 Manifest文件可以由用户、第三方工具或ModelArts标注系统生成。 Manifest文件名没有特殊要求,可以为任意合法文件名。 父主题: Manifest管理
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的
标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: 一般性问题
指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epo
指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epo
lowSpeedTime 1800 如果安装完成后lsmod看不到nv-peer-memory,可能是由于ib驱动版本过低导致,此时需要升级ib驱动,升级命令: wget https://content.mellanox.com/ofed/MLNX_OFED-5.4-3.6.8.1/MLNX_OFED_LINUX-5
线在持续产生的数据中持续迭代训练,确保这条流水线生产出来的模型始终维持在一个较好的状态。 图1 MLOps MLOps的整条链路需要有一个工具去承载,MLOps打通了算法开发到交付运维的全流程。和以往的开发交付不同,以往的开发与交付过程是分离的,算法工程师开发完的模型,一般都需要
备。 数据标注 人工标注 在“未标注”页签图片列表中,单击图片,自动跳转到标注页面。 在标注页面的工具栏中选择合适的标注工具,本示例使用矩形框进行标注。 图6 标注工具 使用标注工具选中目标区域,在弹出的标签文本框中,直接输入新的标签名。如果已存在标签,从下拉列表中选择已有的标签。单击“添加”完成标注。
后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: Standard数据管理
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 修改代码 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后。在上传代码前,需要对解压后的训练脚
修改。 资源池:选择公共资源池 类型:选择GPU或者CPU规格。 永久保存日志:打开 作业日志路径:设置为OBS中存放训练日志的路径。例如:“obs://test-modelarts/pytorch/log/” 在“规格确认”页面,确认训练作业的参数信息,确认无误后单击“提交”。
“计算节点规格”:在下拉框中选择“限时免费”资源,勾选并阅读免费规格说明。 其他参数可使用默认值。 如果限时免费资源售罄,建议选择收费CPU资源进行部署。当选择收费CPU资源部署在线服务时会收取少量资源费用,具体费用以界面信息为准。 参数配置完成后,单击“下一步”,确认规格参数后,单击“提交”启动在线服务的部署。
的华为方技术支持。 适配的CANN版本是cann_8.0.rc2,驱动版本是23.0.5。 约束限制 如果要使用自动重启功能,资源规格必须选择八卡规格,只有llama3-8B/70B支持该功能。 本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持以下模型的训练,如表1所示。
Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 约束限制 如果要使用自动重启功能,资源规格必须选择八卡规格。 本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。
'original_max_position_embeddings': 8192, 'rope_type': 'llama3'} 解决方法:升级transformers版本到4.43.1:pip install transformers --upgrade 问题5:使用Smooth