检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
PYTORCH_NPU_ALLOC_CONF=expandable_segments:False;llava多卡启动时需要关闭虚拟内存扩展;开启时可能提升模型性能。允许分配器最初创建一个段,然后在以后需要更多内存时扩展它的大小。 --image-input-type:图像输入模式,pixel_values and
功率和提升作业的稳定性。详细可了解:无条件自动重启。 Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图4 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练
|──ascendcloud_patch/ # patch补丁包 |──benchmark/ #工具包,存放数据集及基线数据 |──trainer.py # 训练启动脚本
等插件。完成Cluster资源池的购买后,您即可对资源进行配置,并将数据上传至存储云服务中。当您需要使用集群资源时,可以使用kubectl工具或k8s API来下发作业。此外,ModelArts还提供了扩缩容、驱动升级等功能,方便您对集群资源进行管理。 图2 使用流程 推荐您根据以下使用流程对Lite
NPU Finetune训练指导(6.3.904) Open-Clip基于Lite Server适配PyTorch NPU训练指导 AIGC工具tailor使用指导
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 修改代码 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后。在上传代码前,需要对解压后的训练脚
参见表4。 选择标注方式。 在标注页面,上方工具栏提供了常用的表3及表4,系统默认的标注方式为多边形标注。选择多边形标注或极点标注。 标注第一张图片时,一旦选择其中一种,其他所有图片都需要使用此方式进行标注。 图6 工具栏 图7 工具栏 表3 标注方式 图标 使用说明 多边形。在
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 修改代码 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后。在上传代码前,需要对解压后的训练脚
path导致服务启动调用冲突的,需在实例启动后,再指定PYTHONPATH、sys.path; 用户使用了已开启sudo权限的专属池,使用自定义镜像时,sudo工具未安装或安装错误; 用户使用的cann、cuda环境有兼容性问题; 用户的docker镜像配置错误、网络或防火墙限制、镜像构建问题(文件权
该环境为裸机开发环境,主要面向深度定制化开发场景。 优点:支持深度自定义环境安装,可以方便的替换驱动、固件和上层开发包,具有root权限,结合配置指导、初始化工具及容器镜像可以快速搭建昇腾开发环境。 缺点:资源申请周期长,购买成本高,管理视角下资源使用效率较低。 环境开通指导请参考DevServer
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS
|──ascendcloud_patch/ # patch补丁包 |──benchmark/ #工具包,存放数据集及基线数据 |──trainer.py # 训练启动脚本
昇腾云服务6.3.906版本说明 本文档主要介绍昇腾云服务6.3.906版本配套的镜像地址、软件包获取方式和支持的特性能力。 配套的基础镜像 镜像地址 获取方式 配套关系镜像软件说明 配套关系 PyTorch: 西南-贵阳一 swr.cn-southwest-2.myhuaweicloud
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。
在获取软件和镜像中,下载并解压代码包。本文档主要使用ascendcloud-aigc-poc-sdxl-finetune文件夹中的文件,请利用OBS Browser+工具将文件夹中内容上传至OBS的代码文件夹code中。 obs://<bucket_name>/code ├── attention_processor
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS
Lite Cluster&Server介绍 ModelArts Lite基于软硬件深度结合、垂直优化,构建开放兼容、极致性价比、长稳可靠、超大规模的云原生AI算力集群,提供一站式开通、网络互联、高性能存储、集群管理等能力,满足AI高性能计算等场景需求。目前其已在大模型训练推理、自