检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常见的磁盘空间不足的问题和解决办法 该章节用于统一整体所有的常见的磁盘空间不足的问题和解决办法。减少相关问题文档的重复内容。 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下: 本地数据、文件保存将"/cache"目录空间用完。
问题的来源之一,从实际经验看,算子数值精度不足(除去计算错误等BUG问题)所导致的模型收敛问题在整个模型收敛比例里面较低,但其影响会较大,所以,该问题需要引起重视。 而且,由于实现过程差异,不同硬件对于同样的计算过程,数值计算结果通常会有差异,比如GPU和CPU之间,GPU各版本
精度问题诊断 逐个替换模型,检测有问题的模型 该方式主要是通过模型替换,先定位出具体哪个模型引入的误差,进一步诊断具体的模型中哪个算子或者操作导致效果问题,模型替换原理如下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在
权限问题 训练作业访问OBS时,日志提示“stat:403 reason:Forbidden” 日志提示"Permission denied" 父主题: 训练作业
通用问题 ModelArts中提示OBS相关错误
常见问题 MindSpore Lite问题定位指南 模型转换报错如何查看日志和定位? 日志提示Compile graph failed 日志提示Custom op has no reg_op_name attr 父主题: GPU推理业务迁移至昇腾的通用指导
常见问题 模型转换失败怎么办? 常见的模型转换失败原因可以通过查询转换失败错误码来确认具体导失败的原因。Stable Diffusion新推出的模型在转换中可能会遇到算子不支持的问题,您可以到华为云管理页面上提交工单来寻求帮助。 图片大Shape性能劣化严重怎么办? 在昇腾设备上
GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal
在ModelArts的Notebook中如何获取本机外网IP? 本机的外网IP地址可以在主流搜索引擎中搜索“IP地址查询”获取。 图1 查询外网IP地址 父主题: Standard Notebook
训练作业性能问题 训练作业性能降低 父主题: 训练作业
创建模型成功后,部署服务报错,如何排查代码问题 问题现象 创建模型成功后,部署服务失败,如何定位是模型代码编写有问题。 原因分析 用户自定义镜像或者通过基础镜像导入的模型时,用户自己编写了很多自定义的业务逻辑,这些逻辑有问题将会导致服务部署或者预测失败,需要能够排查出哪里有问题。 处理方法 服务部署
业务代码问题 日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields” 日志提示“max_pool2d_with_indices_out_cuda_frame failed
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
Ascend相关问题 Cann软件与Ascend驱动版本不匹配 训练作业的日志出现detect failed(昇腾预检失败) 父主题: 训练作业
#获取文件当前工作目录路径(绝对路径) os.path.realpath(__ file __) #获得文件所在的路径(绝对路径) 也可在搜索引擎寻找其他获取文件路径的方式,使用获取到的路径进行文件读写。 父主题: Standard模型训练
多数场景下的问题可以通过日志报错信息直接定位。如果日志的信息不能定位问题,您可以通过设置环境变量调整日志等级,打印更多调试日志。 关于如何对MindSpore Lite遇到的问题进行定位与解决,请参见MindSpore Lite官网提供的问题定位指南。 父主题: 常见问题