检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
制台,清理您不再使用的数据、文件夹以及OBS桶,避免产生不必要的费用。 您在创建Notebook时,选择了云硬盘EVS存储,该存储会单独收费,Notebook停止后,EVS还在计费,请及时删除该Notebook实例。 您在体验CodeLab时,切换规格为付费的规格时会收费。请前往
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 输入指定的目录在训练开始时,平台会自动将指定的OBS路径下的文件copy到容器内 输出指定的目录在训练过程中,平台会自动将容器内的文件copy到指定的OBS路径下 在“输入”的输入框内设置变量:ORIGINAL
成本。 MaaS提供灵活的模型开发能力,同时基于昇腾云的算力底座能力,提供了若干保障客户商业应用的关键能力。 保障客户系统应用大模型的成本效率,按需收费,按需扩缩的灵活成本效益资源配置方案,有效避免了资源闲置与浪费,降低了进入AI领域的门槛。 架构强调高可用性,多数据中心部署确保
否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。 temperature 否 1.0 Float 控制采样的随机性的浮点数。较低的值使模型更加确定性,较高的值使模型更加随机。0表示贪婪采样。 stream
否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。 temperature 否 1.0 Float 控制采样的随机性的浮点数。较低的值使模型更加确定性,较高的值使模型更加随机。0表示贪婪采样。 stream
否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。
从而提高训练效率。 学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率lr-warmup-init开始预热。您可以选择多少比例的训练迭代步使用预热阶段的学习率。不同的训练框架有不同的参数命名,需要结合代码实现设置对应的参数。
/scripts/obs_pipeline.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。 图1 训练作业启动命令 父主题: 准备镜像
否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。 temperature 否 1.0 Float 控制采样的随机性的浮点数。较低的值使模型更加确定性,较高的值使模型更加随机。0表示贪婪采样。 stream
在ModelArts进行AI全流程开发时,会产生计算资源的计费,计算资源为进行运行自动学习、Workflow、开发环境、模型训练和部署服务的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 专属资源池 使用计算资源的用量。 具体费用可参见ModelArts价格详情。
在ModelArts上如何提升训练效率并减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与对象存储OBS的交互。可通过如下方式进行调整优化。
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
G2HF环境变量并设置为True)。 分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。ORIGINAL_TRAIN_DATA_PATH中则直接选中数据集文件。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下
单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 输入指定的目录在训练开始时,平台会自动将指定的OBS路径下的文件copy到容器内 输出指定的目录在训练过程中,平台会自动将容器内的文件copy到指定的OBS路径下 在“输入”框内设置超参配置:dat
G2HF环境变量并设置为True)。 分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。ORIGINAL_TRAIN_DATA_PATH中则直接选中数据集文件。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下