检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate String 纵向联邦算法学习率,最大长度16 label_dataset String 标签数据集,最大长度100 label_agent
参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。 父主题: 使用TICS可信联邦学习进行联邦建模
脚本中包含恶意行为,包含但不限于非授权访问其他作业数据、篡改文件和配置、恶意消耗容器资源等场景时,会影响到数据提供方的计算环境安全以及其他学习作业的正常执行。 针对该问题,在边缘节点部署场景中,TICS通过构建Python安全沙箱来单独运行横向联邦作业,做到作业运行的安全隔离。 验证安全沙箱防护能力
联邦学习作业管理 查询联邦学习作业列表 父主题: 空间API
用子账号进行创建的,需要参考配置CCE集群子账号权限。 创建可信联邦学习训练型作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中配置作业名称相关参数,完成后单击“确定”。
约束限制 仅IEF计算节点支持创建横向评估型作业。 创建可信联邦学习评估型作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中配置作业名称相关参数,完成后单击“确定”。
可信联邦学习作业管理 新建联邦学习作业 获取横向联邦学习作业详情 获取纵向联邦作业详情 保存纵向联邦作业 保存横向联邦学习作业 查询联邦学习作业列表 查询特征选择执行结果 删除联邦学习作业 执行横向联邦学习作业 执行纵向联邦模型训练作业 父主题: 计算节点API
搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算节点 数据参与方使
REGRESSION(2); job_creation_agent 否 String 预测作业发起方可信计算节点ID,最大32位,由字母和数字组成 is_single_predict 否 Boolean 单方还是双方预测 vfl_external_param 是 VerticalFlExternalParam
进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 基于多方安全计算功能准备好合适的数据,本文主要介绍双方对已有的数据进行样本对齐、特征筛选和联邦建模,并对产生的模型进行评估。 父主题: 使用TICS可信联邦学习进行联邦建模
实验结果 乳腺癌数据集作业结果 父主题: 横向联邦学习场景
Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imbalanced
ModelParamVo 参数 是否必选 参数类型 描述 predict_threshold 否 Float 预测阈值,最小值0,最大值1 learning_rate 否 Float 学习率,最小值0,最大值1 batch_size 否 Integer 批大小,最小值1 epoch 否 Integer
测试步骤 数据准备 训练型横向联邦作业流程 评估型横向联邦作业流程 父主题: 横向联邦学习场景
支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算; 支持控制流和数据流的分离
在计算节点侧查看作业计算过程 计算过程页面可以单击任务节点,查看开始和结束时间等信息。在计算过程页面下方详情列表打开任务详情,可以查看更详细的计算过程信息。 图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 可信联邦学习作业
Long 样本对齐数据量 obs_path String obs/本地文件路径 start_time String 开始时间 end_time String 结束时间 result_ext String 样本对齐结果 请求示例 查询样本对齐结果 get https://x.x.x.x
期。评估通过后,单击“保存并执行”,完成对评估/预测数据的处理和生成。 图10 生成处理后的评估/预测数据 发布预处理后的评估/预测数据集。在预处理作业列表,单击“发布”可以将作业生成的评估/预测数据集发布到空间。生成后的评估/预测数据集即可用于纵向联邦作业及其他作业(不建议用于
创建可信联邦学习训练型作业 参考步骤创建横向训练型作业创建可信联邦学习训练型作业,运行环境选择ModelArts和PriorityModelArts时,新增的资源配额是使用MA Lite资源池进行训练时,工作负载需要配置的资源参数。 图2 配置参数 父主题: 可信联邦学习作业
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景