检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive
时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
CONTAINER:应用时间序列命名空间;PAAS.NODE:节点时间序列命名空间;PAAS.SLA:SLA时间序列命名空间;PAAS.AGGR:集群时间序列命名空间;CUSTOMMETRICS:自定义时间序列命名空间。 metric_name 否 String 时间序列名称,名称长度取
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
准备预测分析数据 使用ModelArts自动学习构建预测分析模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域,例如OBS桶区域为“北京四”时,必须保证ModelArts管理控制台区域也在“北京四”区域,否则会导致无法获取到相关数据。 数据集要求
可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。
单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习预测分析项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可输入代码进行测试。在“自动学习”页面,在服务部署节点,单击“实例详情”进入“在线服务”界面,在“预测”页签的“预测代码”区域,输入调试代码。
查询时间序列 场景描述 本章以查询一个节点的CPU使用率时间序列为例。 涉及的基本信息 查询时间序列前,需要确定节点的ID和集群ID的值,节点ID值可以在ECS的dimensions中查看,集群ID值可以在CCE的“集群管理”页面,基本信息的dimensions中查看。 CPU使
全局序列概述 全局序列主要指基于DB的全局序列。 支持修改自增序列初始值。 全局序列主要保证ID全局唯一,并不能保证一定是连续递增的。 对使用DDM自增序列,不允许用户传null值以外的值,当用户不传或传null值时,DDM会默认分配,如果用户手工赋值会有和DDM分配自增键值冲突的风险。
预测的应用 用户开通预测功能后,可以通过预测功能来估计未来时间内可能消耗的成本和用量,也可以根据预测数据设置预算提醒,以达到基于预测成本进行预算监控的目的。 查看预测数据 登录“成本中心”。 选择“成本洞察 > 成本分析”。 设置周期。 按月查看预测数据时,支持的周期为:当前月、+3M、+6M、+12M;
以为24条数据,那么“预测长度”需要配置为“24”。 预测粒度:保持默认值。 预测类型:取值说明如下所示。本次请选择“时空预测”。 时序预测:如果选择“时序预测”,“目标列”仅支持设置为单列。 “节假日/重大事件预测”:如果选择“节假日/重大事件预测”,“目标列”仅支持设置为单列
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
CPI预测 CPI预测基于蛋白质的一级序列和化合物的2D结构进行靶点匹配,精确的预测化合物-蛋白相互作用。 单击“CPI预测”功能卡片,进入配置页面。 配置靶点文件。 支持3种输入方式,分别是输入氨基酸序列、选择文件、输入PDB ID 输入FASTA格式氨基酸序列,输入框最多支持
创建预测分析自动学习项目时,对训练数据有什么要求? 数据集要求 文件规范:名称由以字母数字及中划线下划线组成,以'.csv'结尾,且文件不能直接放在OBS桶的根目录下,应该存放在OBS桶的文件夹内。如:“/obs-xxx/data/input.csv”。 文件内容:文件保存为“c
序列 SEQUENCE是Oracle对象,用于创建数字序列号。该序列用于创建自动编号字段,可用作主键。 如果参数MigSupportSequence设为true(默认值),则在PUBLIC模式中创建序列。 CACHE和ORDER参数不支持迁移。 Oracle中,序列的MAXVAL
编辑批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“联邦预测”页面,选择批量预测的Tab页,找到待开发的作业,单击“开发”。 图1 开发作业 在弹出的对话框中编辑“选择模型”。只允许选择模型,其它作业参数暂时不支持修改。
实时预测作业必须选择训练FiBiNet模型的参与方计算节点发布的数据集。 创建训练模型时参数必须有"save_format": "SAVED_MODEL"。 创建联邦预测作业 实时预测作业在本地运行,目前仅支持深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理
预测机制 预测的准确性 预测主要是基于用户在华为云上的历史成本和历史用量情况,对未来的成本和用量进行预测。您可以使用预测功能来估计未来时间内可能消耗的成本和用量,并根据预测数据设置预算提醒,以达到基于预测成本进行预算监控的目的。由于预测是一种估计值,因此可能与您在每个账期内的实际数据存在差异。