内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 时间序列预测模型

    AR、MA、ARMA、ARIMA模型介绍 时间序列预测模型 时间序列分析模型建立了 观察结果 与 时间变化 的关系,能帮我们预测未来一段时间内的结果变化情况。 时间序列和逻辑回归的区别 首先,在选择模型前,我们需要确定结果与变量之间的关系。 回归分析训练得到的是目标变量

    作者: 毛利
    发表时间: 2021-07-14 23:11:42
    722
    0
  • 基于Keras的LSTM多变量时间序列预测

    量的问题。 基于(LSTM)的循环神经网络可以很好的利用在时间序列预测上,因为很多古典的线性方法难以适应多变量或多输入预测问题。 在本教程中,你会看到如何在Keras深度学习库中开发多变量时间序列预测的LSTM模型。 读完本教程后,你将学会:      · 

    作者: 格图洛书
    发表时间: 2021-12-29 17:23:52
    836
    0
  • 时序预测任务中的算法选择

    时序预测任务中的传统算法有ARMA和NARMA等,随着机器学习和深度学习的发展,基于SVM、神经网络等的方法也开始流行起来。近年基于深度学习时间序列预测主要以循环神经网络为主(如DeepAR等),其提高了多变量时间序列的精度,但是在大规模分布式并行方面时间序列预测有不少的挑战。

    作者: 黄生
    10
    0
  • 根据 DNA 序列预测「NGS测序深度」的深度学习模型

    DNA 序列预测「NGS测序深度」的深度学习模型一种可以根据 DNA 序列预测「NGS测序深度」的深度学习模型 莱斯大学的研究人员设计了一个深度学习模型,该模型可以根据DNA序列预测Next-Generation Sequencing(NGS)的测序深度。 针对预测测序深度的

    作者: QGS
    1670
    0
  • 使用mindspore做时间序列预测预测,结果很奇怪

    版本:mindspore1.6cann版本:5.0.4在训练完成后,进行预测时,结果跟奇怪,因此我怀疑是不是推理代码写的不对,或者是之前的训练代码哪里有问题,以下是代码:# coding=utf-8import mathimport mindspore as msimport mindspore

    作者: yd_259112227
    105
    2
  • mindspore LSTM时间序列预测,输入维度不对

    以下代码也来自于论坛,论坛中的代码输入不对,我修改了一下,但是有其他问题:import mathimport pandas as pdimport numpy as npimport mindspore.dataset as dsimport mindspore.nn as nnfrom

    作者: yd_259112227
    69
    2
  • Python 时间序列预测 | 详解 STL 算法和预测实践

    文章目录 一、详解STL 二、STL Decompose库 三、时间序列预测实践 一、详解STL STL (Seasonal-Trend decomposition procedure based

    作者: 叶庭云
    发表时间: 2022-06-21 16:26:12
    236
    0
  • 最先进的Prophet时间序列模型预测石油股票

    一、时间序列是什么? 时间序列预测模型是能够根据先前观察到的值预测 未来值的模型。时间序列预测广泛用于非平稳数据。非平稳数据被称为数据,其统计特性(例如均值和标准差)不随时间恒定,而是这些指标随时间变化。 这些非平稳输入数据(用作这些模型的输入)通常称为时间序列时间序列的一

    作者: 川川菜鸟
    发表时间: 2022-04-13 18:48:12
    392
    0
  • Graph WaveNet:时空序列预测模型

    会对产品有共同偏好。(2)两个节点之间存在依赖关系,但缺乏链接,例如推荐系统中,两个用户存在相同偏好,但缺乏连接。时空图模型未能有效学习到时间依赖性。(1)基于RNN的方法,迭代传播耗时,存在梯度爆炸/消失问题。(2)基于CNN的方法通常需要较多层以保证感受野大小。本文要解决的主

    作者: yyy7124
    1346
    5
  • 时间序列预测LSTM与TCN

    和RNN等一般的递归体系结构。尽管RNN在理论上可以处理较长时间序列数据,但是在实践过程中并不能实现。LSTM和TCN都能够保存更加长期的记忆,并且有效避免了RNN中梯度爆炸和梯度消失的问题。但是,对于时间较长的序列数据,LSTM需要使用大量内存来存储单元状态,而TCN中特征的

    作者: vvvvvvv_sy
    发表时间: 2021-04-30 09:05:58
    5039
    0
  • 时间序列预测】基于matlab RBF神经网络时间序列预测【含Matlab源码 1336期】

    中心法、自组织选取中心法、有监督选取中心法和正交最小二乘法(OLS)。 2 时间序列的RBF神经网络预测 基于RBF神经网络的时间序列预测模型,最主要的是需要确定好训练样本的输入和输出。为预测时间序列y(i)的值,以X(i)=[y(i-n),y(i-n+1),…,y(i-1)]

    作者: 海神之光
    发表时间: 2022-05-28 18:31:41
    281
    0
  • 【LMS时间序列预测】基于matlab LMS麦基玻璃时间序列预测【含Matlab源码 1443期】

    通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。 获取代码方式2: 完整代码已上传我的资源:【时间序列预测】基于matlab LMS麦基玻璃时间序列预测【含Matlab源码 1443期】 备注: 订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);

    作者: 海神之光
    发表时间: 2022-05-28 18:04:08
    171
    0
  • Pandas数据应用:时间序列预测

    决方案。 1. 时间序列基础概念 1.1 定义 时间序列是指按照时间顺序排列的一组观测值。这些观测值可以是股票价格、气温、销售量等。在时间序列中,每个数据点都有一个对应的时间戳,这使得我们可以研究数据随时间的变化趋势。 1.2 特征 时间序列通常具有以下特征: 趋势(Trend)

    作者: 超梦
    发表时间: 2025-01-12 14:23:35
    92
    0
  • 【LSTM时间序列预测】基于matlab鲸鱼算法优化LSTM时间序列预测【含Matlab源码 105期】

    %输入LSTM的时间序列交替一个时间步 XTrain = dataTrainStandardized(1:end-1); YTrain = dataTrainStandardized(2:end); %% %创建LSTM回归网络,指定LSTM层的隐含单元个数96*3 %序列预测,因此,输入一维,输出一维

    作者: 海神之光
    发表时间: 2022-05-28 21:23:04
    286
    0
  • 【LSTM时间序列预测】基于matlab贝叶斯网络优化LSTM时间序列预测【含Matlab源码 1329期】

    的核心概念在于细胞状态以及“门”结构。细胞状态相当于信息传输的路径,让信息能在序列连中传递下去。你可以将其看作网络的“记忆”。理论上讲,细胞状态能够将序列处理过程中的相关信息一直传递下去。 因此,即使是较早时间步长的信息也能携带到较后时间步长的细胞中来,这克服了短时记忆的影响。信息的添加和移除我们

    作者: 海神之光
    发表时间: 2022-05-28 16:09:13
    323
    0
  • 【SVM时间序列预测】基于matlab粒子群算法优化SVM时间序列预测【含Matlab源码 259期】

    一、粒子群算法优化SVM预测简介 1 支持向量机方法 支持向量机的理论基础是结构风险最小化原则和VC维理论, 它是一种新型的机器学习方法, 并不是单纯地考虑经验风险

    作者: 海神之光
    发表时间: 2022-05-28 14:17:08
    335
    0
  • 【LSTM时间序列预测】基于matlab鲸鱼算法优化LSTM时间序列预测【含Matlab源码 1687期】

    的核心概念在于细胞状态以及“门”结构。细胞状态相当于信息传输的路径,让信息能在序列连中传递下去。你可以将其看作网络的“记忆”。理论上讲,细胞状态能够将序列处理过程中的相关信息一直传递下去。 因此,即使是较早时间步长的信息也能携带到较后时间步长的细胞中来,这克服了短时记忆的影响。信息的添加和移除我们

    作者: 海神之光
    发表时间: 2022-05-28 17:22:52
    209
    0
  • 【LSTM时间序列预测】基于matlab贝叶斯网络优化LSTM时间序列预测【含Matlab源码 1158期】

    的核心概念在于细胞状态以及“门”结构。细胞状态相当于信息传输的路径,让信息能在序列连中传递下去。你可以将其看作网络的“记忆”。理论上讲,细胞状态能够将序列处理过程中的相关信息一直传递下去。 因此,即使是较早时间步长的信息也能携带到较后时间步长的细胞中来,这克服了短时记忆的影响。信息的添加和移除我们

    作者: 海神之光
    发表时间: 2022-05-28 16:49:10
    251
    0
  • 数据分析实战│时间序列预测

     由于检验统计量大于临界值的5%,时间序列数据不是稳定序列数据。综上所述,可以确定时间序列数据是不稳定的。上述分析可知,该时间序列数据为非平稳序列数据,将该时间序列数据转换成平稳时间序列,常用的方法是差分法和滚动平均法。差分法是采用一个特定时间差内数据的差值来表示原始时间数据,能够处理序列数据中的趋势

    作者: TiAmoZhang
    发表时间: 2023-12-22 09:09:40
    4
    0
  • 使用Python实现时间序列预测模型

    时间序列预测是一种重要的数据分析技术,它可以帮助我们预测未来的趋势和模式。在本文中,我们将介绍时间序列预测的基本原理和常见的预测模型,并使用Python来实现这些模型。 什么是时间序列预测时间序列预测是根据过去的观测数据来预测未来的数值。时间序列数据是按时间顺序排列的一系列

    作者: Echo_Wish
    发表时间: 2024-04-20 08:44:09
    76
    0