检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1:数据集正常 2:数据集删除中 3:数据集已删除 4:数据集异常 5:数据集同步中 6:数据集发布中 7:数据集版本切换中 8:数据集导入中 third_path String 第三方路径。 total_sample_count Integer 数据集样本总数。 total_sub_sample_count
查询数据集的版本列表 创建数据集标注版本 查询数据集版本详情 删除数据集标注版本 查询样本列表 批量添加样本 批量删除样本 查询单个样本信息 获取样本搜索条件 分页查询团队标注任务下的样本列表 查询团队标注的样本信息 查询数据集标签列表 创建数据集标签 批量修改标签 批量删除标签 按标签名称更新单个标签
验收操作。可选值如下: 0:完成验收时,通过全部样本(包括单张驳回)。 1:完成验收时,驳回全部样本(包括单张通过)。 4:完成验收时, 只通过单张验收通过的样本及未处理的样本。 5:完成验收时, 只驳回单张验收驳回的样本及未处理的样本。 checking_stats CheckTaskStats
AI Gallery支持将模型进行微调,训练后得到更优模型。 场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训练得到的,而在特定任务上,这些模型的参数可能并不都是最合适的,因此需要进行微调。
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
订购华为RPA-WeAutomate工具 华为RPA-WeAutomate工具结合OCR、NLP等深度学习AI算法,通过模拟并增强人与计算机的交互过程,实现工作流程自动化。快速构建企业级智能自动化平台,一站式获取RPA+AI+小程序能力,助力客户打通数字化转型最后一公里。 华为R
使用已有算法创建训练作业 算法管理中,管理了用户自己创建的算法和AI Gallery订阅的算法,您可以使用算法管理中的算法,快速创建训练作业,构建模型。 使用订阅算法创建训练作业 AI Gallery中提供了现成的算法,供用户使用,您可以直接订阅AI Gallery中的算法,快速创建训练作业,构建模型。
读取文件控制并发 在基因数据处理流程中,经常需要读取某个文件的内容来控制并发任务,或者获取另一个步骤的“输出结果”来控制并发任务。如,把样本文件按照固定大小进行拆分之后,需要得到所有的拆分文件名集合。或者上一步是分布式处理的,需要得到结果的总和。 图1 读取文件控制并发 这种情况
采样方式介绍 蒙特卡洛采样 蒙特卡洛采样是一种简单的随机抽样,根据概率分布进行采样,如对样本服从µ=0,δ=1的正态分布,通过蒙特卡洛采样进行采样,采样得到的点能满足正态分布要求,如下图所示,采样得到的点会集中µ=0附近,要想采样得到更边界的点,需要进行大量采样。 图1 蒙特卡洛采样
OCR识别中,哪些算有效计费 OCR服务通过RestFul API调用,计费以Https请求返回的状态码为准,当返回状态码为2xx(如200/201)时,表示调用成功并进行扣费。 OCR服务通过套餐包计费方式,来降低调用成本,从绝大部分客户的使用来看,客户上传错误样本导致计费的占比非常非常小,几乎可忽略不计。
采样方式有几种? 蒙特卡洛采样 蒙特卡洛采样是一种简单的随机抽样,根据概率分布进行采样,如对样本服从µ=0,δ=1的正态分布,通过通过蒙特卡洛采样进行采样,采样得到的点能满足正态分布要求,但如下图所示,采样得到的点会集中µ=0附近,要想采样得到更边界的点,需要进行大量采样。 图1
object 通过样本属性搜索。 parent_sample_id 否 String 父样本ID。 sample_dir 否 String 根据样本所在目录搜索(目录需要以/结尾),只搜索指定目录下的样本,不支持目录递归搜索。 sample_name 否 String 根据样本名称搜索(含后缀名)。
横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的
对接多种主流数据存储系统,为数据消费者实现多方数据的融合分析,参与方敏感数据能够在聚合计算节点中实现安全计算。 多方联邦训练 对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。 云端容器化部署 参与方数据源计算节点云原生容器部署,聚
object 通过样本属性搜索。 parent_sample_id String 父样本ID。 sample_dir String 根据样本所在目录搜索(目录需要以/结尾),只搜索指定目录下的样本,不支持目录递归搜索。 sample_name String 根据样本名称搜索(含后缀名)。
必须修改。用于指定模板。如果设置为"qwen",则使用QWEN模板进行训练,模板选择可参照表1中的template列 max_samples 50000 用于指定训练过程中使用的最大样本数量。如果设置了这个参数,训练过程将只使用指定数量的样本,而忽略其他样本。这可以用于控制训练过程的规模和计算需求 overwrite_cache
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
数据集:某业务下具有相同数据格式数据的逻辑集合。 数据:数据集实例,有具体的特征和样本数据。 数据集以文件夹的形式管理数据,一个数据集中可以包含多份数据,从而对数据进行高效简洁的管理。用户可以根据数据的业务特点建立数据集,例如在大型DC PUE Case中,可以创建空调、冷站等数据集,再分别创建相应的数据。 数据来源
调测成功后,会将测试的输出数据(即样本数据)及输入数据进行展示,并会在该条节点的左上角标记图标。如果提示“调测失败,请检查接口参数配置是否准确”,请检查并重新配置参数后重试。 表1 起始节点配置参数说明 参数 说明 API请求方式 在下拉列表中可选择以下API请求方式: get:
验收操作。可选值如下: 0:完成验收时,通过全部样本(包括单张驳回)。 1:完成验收时,驳回全部样本(包括单张通过)。 4:完成验收时, 只通过单张验收通过的样本及未处理的样本。 5:完成验收时, 只驳回单张验收驳回的样本及未处理的样本。 checking_stats CheckTaskStats