检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Goodfellow et al. (2014b) 表明,这些对抗样本的主要原因之一是过度线性。神经网络主要是基于线性块构建的。因此在一些实验中,它们实现的整体函数被证明是高度线性的。这些线性函数很容易优化。不幸的是,如果一个线性函数具有许多输入,那么它的值可以非常迅速地改变。如果我们用
DSSM召回的样本中: 正样本就是曝光给用户并且用户点击的item;负样本:其实常见错误是直接使用曝光并且没被user点击的item,但是会导致SSB(sample selection bias)样本选择偏差问题——因为召回在线时时从全量候选item中召回,而不是从有曝光的item中召回。
)。低样本目标检测的层次结构分类法如图1所示。本文对现有的少样本和零样本目标检测算法进行了全面的回顾和分析。本文总结了现有的少样本和零样本目标检测算法的性能。本文讨论了少样本和零样本目标检测的主要挑战和未来的发展方向。本文综述的其余部分组织如下。第二节描述了对少样本和零样本目标检
4)广义小样本识别:目前的小样本识别任务主要研究小样本类别的分类。但现实世界中不仅只有小样本类,具有大量数据的辅助类同样需要识别。泛化小样本识别将辅助类与小样本类放到一起同时识别。该任务的核心在于如何解决数据不均衡的分类问题,避免在大数据类别上的过拟合现象。(5)小样本检测与分割
对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ 未必是真正的标签,但如果模型是高品质的,那么 yˆ 提供正确标签的可能性很大。我们可以搜索一个对抗样本 x′,导致分类器输出一个标签 y′ 且 y′
01基于数据 1.1 变换训练集 该策略通过将每个样本转换为几个有一定变化的样本来增广训练集的样本数。但是,目前为止变换训练集的方法只适用于图像。 人工规则(Handcrafted Rule):在图像识别任务中,使用手工制作的规则变换原始样本作为预处理程序,例如、翻转、剪切、缩放、反射、裁剪和旋转。
我在训练的时候总是的不到号的效果,后面发现是样本的类别差别太大了,正负样本快10:1,我要怎么做呢,已经没有更多的数据了
第1章深度学习基础知识掌握好深度学习的基础知识是理解对抗样本的基本前提,本章将简要介绍深度学习的背景知识,详细介绍与对抗样本相关的一些重要知识点。对抗样本应用最广泛的领域是机器视觉,包括图像分类、目标识别、人脸比对等,所以本章还将重点介绍基于CNN的图像分类。在实际项目中,如何衡
军事和金融领域)没有条件获取足够的带标签的训练样本,因此,如何使得一个机器学习/深度学习系统能够从非常少量的样本中高效地学习和推广其认知能力,成为许多机器学习/深度学习研究人员迫切期待实现的蓝图。 从高层的角度来看,研究小样本学习(FSL)的理论和实践意义主要来自三个方面:
第3章常见深度学习平台简介在第2章中,我们介绍了如何搭建对抗样本的工具箱环境,概要介绍了主流的深度学习平台。本章将结合实际案例,具体介绍TensorFlow、Keras、PyTorch和MXNet平台的使用方法。3.1 张量与计算图在Python编程中,我们经常使用NumPy表示
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。
批量删除样本 根据样本的ID列表批量删除数据集中的样本。 dataset.delete_samples(samples) 示例代码 批量删除数据集中的样本 from modelarts.session import Session from modelarts.dataset import
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
练样本”或“学习案例样本”页签,单击样本下方的/。 单个下载样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的或单击样本,在样本详情页面单击样本中的 按任务归类 单击对应的“采集样本数量”、“AI训练样本数”或“学习案例样本数”列的数值,“可以进入到样本清单明细页面,查看当前的样本明细
的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum( case when i.label > 0 then 1 else 0 end ) as positive_count, sum(
查询单个样本详情 根据样本ID查询数据集中指定样本的详细信息。 dataset.get_sample_info(sample_id) 示例代码 根据ID查询数据集中样本的详细信息 from modelarts.session import Session from modelarts
查询样本列表 查询数据集的样本列表,不支持表格类型数据集。 dataset.list_samples(version_id=None, offset=None, limit=None) 示例代码 示例一:查询数据集样本列表 from modelarts.session import
批量更新样本标签 功能介绍 批量更新样本标签,包括添加、修改和删除样本标签。当请求体中单个样本的“labels”参数传空列表时,表示删除该样本的标签。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
批量删除样本 功能介绍 批量删除样本。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset
查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数