已找到以下 10000 条记录

AI平台ModelArts

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
AI平台ModelArts
ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
  • 深度学习之对抗样本

    化与大型函数族结合的力量。纯粹的线性模型,如逻辑回归,由于它们被限制为线性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据的线性趋势同时学习抵抗局部扰动。

    作者: 小强鼓掌
    631
    3
  • 深度学习之虚拟对抗样本

    对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ 未必是真正的标签,但如果模型是高品质的,那么 yˆ 提供正确标签的可能性很大。我们可以搜索一个对抗样本 x′,导致分类器输出一个标签 y′ 且 y′

    作者: 小强鼓掌
    730
    3
  • 【推荐系统基础】正负样本采样和构造

    DSSM召回的样本: 正样本就是曝光给用户并且用户点击的item;负样本:其实常见错误是直接使用曝光并且没被user点击的item,但是会导致SSB(sample selection bias)样本选择偏差问题——因为召回在线时时从全量候选item召回,而不是从有曝光的item中召回。

    作者: 野猪佩奇996
    发表时间: 2022-07-07 16:44:30
    994
    0
  • 目标检测算法是如何生成正负样本

    以下文章来源于GiantPandaCV ,作者刘庆龙一、正负样本的概念目前,许多人在看相关目标检测的论文时,常常误以为正样本就是我们手动标注的GT(ground truth),这个理解是错误的,正确的理解是这样的: 首先,正样本是想要检测的目标,比如检测人脸时,人脸是正样本,非人脸则是负样本,比如旁边的窗户、红绿

    作者: @Wu
    6
    0
  • 目标检测算法是如何生成正负样本的(3)

    通过该分配策略就可以将不同大小的GT分配到最合适的预测层进行学习。 2、确定正负样本区域。 对于每一层feature map,设定一个以GT中心为圆心,固定半径的圆,如果像素落在该圆内,则标记为positive样本,否则为negative。 具体实现:通过center_samp

    作者: @Wu
    5
    0
  • 深度学习炼丹-不平衡样本的处理

    前言 在机器学习的经典假设往往假设训练样本各类别数目是均衡的,但在实际场景,训练样本数据往往都是不均衡(不平衡)的。比如在图像二分类问题中,一个极端的例子是,训练集中有 95 个正样本,但是负样本只有 5 个。这种类别数据不均衡的情况下,如果不做不平衡样本的处理,会导致模型

    作者: 嵌入式视觉
    发表时间: 2023-01-11 09:23:43
    228
    0
  • 目标检测算法是如何生成正负样本的(2)

    作者刘庆龙 二、为什么要进行正负样本采样?需要处理好正负样本不平衡问题:在ROI、RPN等过程,整个图像中正样本区域少,大部分是负样本[^2]。提高网络收敛速度和精度:对于目标检测算法,主要需要关注的是对应着真实物体的 正样本 ,在训练时会根据其loss来调整网络参数。相比之下, 负样本对应着图像

    作者: @Wu
    6
    0
  • 样本学习INTRODUCTION

    事和金融领域)没有条件获取足够的带标签的训练样本,因此,如何使得一个机器学习/深度学习系统能够从非常少量的样本中高效地学习和推广其认知能力,成为许多机器学习/深度学习研究人员迫切期待实现的蓝图。    从高层的角度来看,研究小样本学习(FSL)的理论和实践意义主要来自三个方面:首

    作者: Tianyi_Li
    1495
    0
  • 面向自然语言处理的深度学习对抗样本综述

    深度学习模型被证明存在脆弱性并容易遭到对抗样本的攻击,但目前对于对抗样本的研究主要集中在计算机视觉领 域而忽略了自然语言处理模型的安全问题.针对自然语言处理领域同样面临对抗样本的风险,在阐明对抗样本相关概念的基 础上,文中首先对基于深度学习的自然语言处理模型的复杂结构、难以探知的

    作者: 可爱又积极
    1140
    3
  • 【小样本学习】小样本学习概述

    获取与标注是十分困难的,近年来小样本学习逐渐成为当前的热点研究问题。本文从小样本学习定义,当前主流方法以及小样本学习的前沿方向三个角度,对小样本学习进行全面的分析。1. 小样本学习定义        小样本学习主要研究如何通过少量样本学习识别模型。目前学术界普遍研究的是N-way

    作者: 星火燎原
    发表时间: 2020-06-18 10:57:35
    11147
    0
  • 基于ModelArts实现小样本学习

    样本学习本baseline采用pytorch框架,应用ModelArts的Notebook进行开发为该论文复现代码Cross-Domain Few-Shot Classification via Learned Feature-Wise TransformationHung-Yu

    作者: HWCloudAI
    61
    1
  • 样本学习综述

    该策略通过将每个样本转换为几个有一定变化的样本来增广训练集的样本数。但是,目前为止变换训练集的方法只适用于图像。 人工规则(Handcrafted Rule):在图像识别任务,使用手工制作的规则变换原始样本作为预处理程序,例如、翻转、剪切、缩放、反射、裁剪和旋转。 学习规则(Learned

    作者: 可爱又积极
    865
    0
  • 深度学习模型优化

    项目实习生 深度学习模型优化 深度学习模型优化 领域方向:人工智能 工作地点: 深圳 深度学习模型优化 人工智能 深圳 项目简介 为AI类应用深度学习模型研发优化技术,包括神经网络结构设计,NAS搜索算法,训练算法优化,AI模型编译优化等。 岗位职责 负责调研深度学习模型优化技术

  • 浙大宋明黎等最新《深度学习样本目标检测》综述论文阐述少样本和零样本目标检测

    在现实生活,由于某些目标类别的稀缺或特殊的标签成本,很难收集到足够的标签数据。因此,现代目标检测器需要具备从少量甚至零标记数据检测目标的能力,并将少样本和零样本学习引入到目标检测。少样本学习的目的是从少量标记样本学习泛化模型。在过去的几年里,针对少样本学习提出了很多方法

    作者: 可爱又积极
    1309
    4
  • 样本学习总结(一)

    距离的softmax,a对于支撑样本和查询样本的Embedding函数是不同的,通过C()函数来计算两个Embedding的余弦距离支撑样本的Embedding是g,是基于双向LSTM来学习的,每个支撑样本的Embedding是其他支撑集是相关的测试样本的Embedding是一

    作者: Deep_Rookie
    发表时间: 2020-10-22 20:25:22
    5237
    0
  • 查询样本对齐结果 - 可信智能计算服务 TICS

    查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数

  • 样本对齐 - 可信智能计算服务 TICS

    样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模

  • 执行样本对齐 - 可信智能计算服务 TICS

    String 样本对齐算法。 OPRF, SQL_JOIN; datasets 否 Map<String,String> 样本对齐数据集 align_ids 否 Map<String,String> 样本对齐字段ID集合 agents 否 Array of strings 样本对齐agentId

  • AI平台ModelArts入门

    Notebook编程环境的操作 了解详情 最佳实践 最佳实践 口罩检测(使用新版自动学习实现物体检测应用) 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。

  • AI平台ModelArts资源

    获取海量开发者技术资源、工具 开发者计划 使能开发者基于开放能力进行技术创新 开发支持 专业高效的开发者在线技术支持服务 开发者学堂 云上学习、实验、认证的知识服务中心 开发者活动 开发者实训、热门活动专区 社区论坛 专家技术布道、开发者交流分享的平台 文档下载 AI平台ModelArts文档下载

提示

您即将访问非华为云网站,请注意账号财产安全