已找到以下 10000 条记录
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics),20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    955
    4
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2441
    1
  • 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知

    产品公告 > 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知 2019-04-30 尊敬的华为云客户: 华为云计划于2019/5/30 00:00(北京时间)将深度学习服务正式退市。 华

  • 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 - 盘古大模型 PanguLargeModels

    为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来

  • 什么是深度学习

    于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出的流程图的最长路径的

    作者: 角动量
    1546
    5
  • 创建纵向联邦学习作业 - 可信智能计算服务 TICS

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

  • 深度学习应用开发》学习笔记-10

    变量xi样本指数据的特定实例x,有标签样本具有{特征,标签},用于训练模型;无标签样本具有{特征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习,机器学习

    作者: 黄生
    1430
    3
  • 查询样本列表 - AI开发平台ModelArts

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

  • 百度RocketQA系列搜索技术论文解析(二)

    在传统loss的基础上,约束正负例之间的Embedding距离。但是模型没有直接对正负例的Embeding做约束,而是通过约束正例与query之间的距离与正负例之间的距离,达到加大正负例之间Embedding距离的目的。 由于Loss将正负例之间的距离与query与正例之

    作者: 人工智障研究员
    发表时间: 2022-05-16 11:38:06
    671
    0
  • 深度学习深度模型的优化

    深度学习算法在许多情况下都涉及到优化。例如,模型的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化

    作者: 小强鼓掌
    337
    1
  • 样本学习【一】论文分享:Few-Shot Learning via Embedding Adaptation

    p;在深度学习时代,基于少量数据学习视觉模型具有非常强大的挑战性。目前大部分小样本学习方法都是基于已知类数据学习视觉模型,然后迁移到新的小样本数据。这类方法学习的是一个通用模型,没有针对目标任务进行特定的学习,因此在是配到不同目标任务上表现不佳。这篇文章提出了基于集合学习的方法

    作者: 星火燎原
    发表时间: 2020-08-31 02:54:19
    6278
    0
  • 深度学习简介

    信息进一步优化神经网络权值的深度置信网络(DBN)。 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation

    作者: 某地瓜
    1680
    1
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1554
    1
  • 深度学习随机取样、学习

    样本都可以被载入内存,那可以通过对样本索引进行相应的处理抽样就可以达到样本抽样的效果。在语音处理任务,若无法将所有样本载入内存进行计算,可以采用滚动窗的方法每次加载一块数据进内存,然后再窗内随机取样。batch大小选择在训练过程中都需要从训练样本的一个批量集合中进行梯度计

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    样本都可以被载入内存,那可以通过对样本索引进行相应的处理抽样就可以达到样本抽样的效果。在语音处理任务,若无法将所有样本载入内存进行计算,可以采用滚动窗的方法每次加载一块数据进内存,然后再窗内随机取样。batch大小选择在训练过程中都需要从训练样本的一个批量集合中进行梯度计

    作者: 运气男孩
    1443
    5
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 机器学习深度学习

    部所需的规则,而且在此过程必然会涉及到一些困难的概念,比如对毛茸茸的定义。因此,更好的方式是让机器自学。深度学习(DeepLearning,DL)属于机器学习的子类。它的灵感来源于人类大脑的工作方式,是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并非是一个全新

    作者: QGS
    678
    2
  • ML之LoR:利用LoR二分类之非线性决策算法案例应用之划分正负样本

    ML之LoR:利用LoR二分类之非线性决策算法案例应用之划分正负样本     目录 输出结果 实现代码       输出结果 1、对数据集进行特征映射 2、正则化 → 正则化 → 过度正则化   实现代码 import numpy as npimport

    作者: 一个处女座的程序猿
    发表时间: 2021-03-30 15:47:02
    525
    0
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;

    作者: 黄生
    347
    1
  • “智能基座”产教融合协同育人基地

    力。 通过课后实践、创新实践课等,把知识转化为动手能力。 学练考证一站式学习 一站式服务:课程学习、沙箱实验、考试认证。 一站式服务:课程学习、沙箱实验、考试认证。 精选课程 体系化的培训课程,快速完成学习覆盖,让您轻松上云 鲲鹏主题课程 昇腾主题课程 《数据库》课程方案 1 方案介绍