已找到以下 10000 条记录
  • 深度学习是什么?

    学习过程获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    818
    2
  • 华为云hilens

    景的不同设备运行,打通行业AI应用落地最后一公里。 优势 高性能并发调度引擎 ModelBox中将所有的任务都以功能单元的形式封装,由多个功能单元构成一个完整的应用。执行时,功能单元的计算将统一由线程池并发调度,确保计算单元被分配到对应的异构硬件执行。同时,计算,数据和执行

  • 机器学习深度学习

    有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象的应用深度学习技术取得了优越性能以往机器学习技术在应用要取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫

    作者: ypr189
    731
    1
  • 样本学习在文心ERNIE3.0多分类任务应用--提示学习

    务场景,特别是垂直领域、特定行业,训练样本数量不足的问题广泛存在,极大地影响这些模型在下游任务的准确度,因此,预训练语言模型学习到的大量知识无法充分地发挥出来。本项目实现基于预训练语言模型的小样本数据调优,从而解决大模型与小训练集不相匹配的问题。 小样本学习是机器学习领域未来

    作者: 汀丶
    发表时间: 2022-11-11 06:09:06
    312
    0
  • 深度学习

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: QGS
    662
    1
  • 《AI安全之对抗样本入门》—2 打造对抗样本工具箱

    第2章打造对抗样本工具箱对抗样本深度学习领域一个新兴的热点内容,非常强调理论和工程相结合。在开启新的学习旅途之前,我们先介绍一下对抗样本环境的搭建过程,强烈建议读者在Linux或者Mac环境下进行搭建,因为深度学习的常用工具几乎都是基于Python开发的,但是Python相关的

    作者: 华章计算机
    发表时间: 2019-06-17 17:47:40
    5319
    0
  • 请问样本在哪里上传?

    请问在哪里上传病毒样本?直接发论坛里可能不太合适

    作者: 金牌饲养员
    15
    1
  • 深度学习之Bagging学习

    在小批量中加载一个样本,然后随机抽样应用于网络中所有输入和隐藏单元的不同二值掩码。对于每个单元,掩码是独立采样的。掩码值为 1 的采样概率(导致包含一个单元)是训练开始前一个固定的超参数。它不是模型当前参数值或输入样本的函数。通常在每一个小批量训练的神经网络,一个输入单元被包括的概率为

    作者: 小强鼓掌
    1253
    2
  • 管理样本库 - 数据治理中心 DataArts Studio

    删除操作无法撤销,请谨慎操作。 编辑样本:在样本库管理页面,单击对应样本操作栏的“编辑”,即可修改样本的各项参数。 删除样本:在样本库管理页面,单击对应样本操作栏的“删除”,即可删除样本。 注意,被脱敏算法引用的样本不能被删除。若要删除已引用的样本,需要先修改引用关系,再进行删除操作。

  • 使用模型 - CodeArts IDE Online

    鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 时序对齐预测的监督表示学习与少样本序列分类

    列表示学习,我们展示了用各种度量学习损失训练的 TAP 以更快的推理速度实现了具有竞争力的性能。对于小样本动作分类,我们将 TAP 作为基于度量学习的episode训练范式的距离度量。这种简单的策略取得了与最先进的小样本动作识别方法接近的结果。https://openreview

    作者: 可爱又积极
    1972
    2
  • 查询样本列表 - AI开发平台ModelArts

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

  • 深度学习 - 深度学习 (人工神经网络的研究的概念)

    文章目录 深度学习 - 深度学习 (人工神经网络的研究的概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习是如何进行训练的自下上升的非监督学习自顶向下的监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)

    作者: 简简单单Onlinezuozuo
    发表时间: 2022-02-18 15:08:32
    608
    0
  • 准备工作 - CodeArts IDE Online

    Editor,可以在里面编辑和运行cell。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知

    服务公告 全部公告 > 产品公告 > 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 2018-11-20 尊敬的华为云客户: 华为云计划于2018/12/21

  • 深度学习之“深度

            深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。“深度学习的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。数据模型包含多少层,这被称

    作者: ypr189
    1571
    1
  • 深度学习——常用评价指标

    集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据正负样本的分布也可能随着时间变化。  ROC曲线绘制:  (1)根据每个测试样本属于正样本的概率值

    作者: QGS
    782
    3
  • 深度学习概念

    Intelligence)。深度学习学习样本数据的内在规律和表示层次,这些学习过程获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前

    作者: QGS
    973
    3
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics),20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    964
    4
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2443
    1