检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以llama2为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到
error_code String 调用失败时的错误码,具体请参见错误码,调用成功时无此字段。 error_solution String 调用失败时的提示解决信息,调用成功时无此字段。 父主题: 训练作业
可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home
可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home
即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以llama2为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到
可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home
即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以llama2为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到
error_code String 调用失败时的错误码,具体请参见错误码,调用成功时无此字段。 error_solution String 调用失败时的提示解决信息,调用成功时无此字段。 父主题: 训练作业
功能,需要新建一个OBS挂载专属目录如“/obs-mount/”,避免选择存量目录覆盖已有文件。OBS挂载仅开放对挂载目录文件新增、查看、修改功能,如果需要删除文件请到OBS并行文件系统中手动删除。 健康检查接口示例如下。 URI GET /health 请求示例curl -X GET
ts参数配合使用。 enterprise_project_id String 企业项目ID。 update_time Integer 最后修改时间,UTC。 create_time Integer 创建时间,UTC。 enterprise_project_name String 企业项目名称。
件。模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 Step4 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。 docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1
方式一:图形界面的软件获取服务的IP和端口号 图6 接口返回示例 方式二:Python语言获取IP和端口号 Python代码如下,下述代码中以下参数需要手动修改: project_id:用户项目ID,获取方法请参见获取项目ID和名称。 service_id:服务ID,在服务详情页可查看。 REGI
服务 在llm_inference/ascend_vllm/目录下通OpenAI服务API接口启动服务,具体操作命令如下,可以根据参数说明修改配置。 (1)非多模态 python -m vllm.entrypoints.openai.api_server --model ${container_model_path}
方式一:图形界面的软件获取服务的IP和端口号 图6 接口返回示例 方式二:Python语言获取IP和端口号 Python代码如下,下述代码中以下参数需要手动修改: project_id:用户项目ID,获取方法请参见获取项目ID和名称。 service_id:服务ID,在服务详情页可查看。 REGI
import cv2 cv2.imread('obs://bucket_name/xxx.jpg', cv2.IMREAD_COLOR) 修改为如下代码: 1 2 3 4 import cv2 import numpy as np import moxing as mox img
该指令无法完全模拟线上,主要是由于-v挂载进去的目录是root权限。在线上,模型文件从OBS下载到/home/mind/model目录之后,文件owner将统一修改为ma-user。 在本地机器上启动另一个终端,执行以下验证指令,得到符合预期的推理结果。 curl https://127.0.0.1:8080/${推理服务的请求路径}
服务 在llm_inference/ascend_vllm/目录下通OpenAI服务API接口启动服务,具体操作命令如下,可以根据参数说明修改配置。 (1)非多模态 python -m vllm.entrypoints.openai.api_server --model ${container_model_path}
边缘服务状态异常,异常信息:实例不存在 Update service status to abnormal, deployment is not exist. 请修改实例后重试。 正常 实例在当前边缘节点状态为xxx,相关信息:xxx Instance is %s in node(%s), %s - 正常
训练容器的“${MA_JOB_DIR}/demo-code”目录中,demo-code为OBS存放代码路径的最后一级目录,用户可以根据实际修改。 请注意不要将训练数据放在代码目录路径下。训练数据比较大,训练代码目录在训练作业启动后会下载至后台,可能会有下载失败的风险。建议训练代码目录大小小于或等于50MB。
exec(check_program, exec_globals) #第58行 执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port}