通过OBS导入模型时,如何编写打印日志代码才能在ModelArts日志查询界面看到日志 问题现象 用户通过OBS导入模型时,选择使用基础镜像,用户自己编写了部分推理代码实现自己的推理逻辑,出现故障后希望通过故障日志排查定位故障原因,但是通过logger打印日志无法在“在线服务”的日志中查看到部分内容。
olicy 用于更新Notebook实例的自动停止时间。 OBS并行文件系统场景下使用MindInsight/TensorBoard可视化工具。 ModelArts modelarts:notebook:umountStorage modelarts:notebook:getMountedStorage
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
统一身份认证 进入ModelArts控制台的某个页面时,为什么会提示权限不足? 图12 页面提示权限不足 可能原因是用户委托权限配置不足或模块能力升级,需要更新授权信息。根据界面操作提示追加授权即可。 父主题: 配置ModelArts Standard访问授权
MindSpore日志提示“ retCode=0x91, [the model stream execute failed]” 问题现象 使用mindspore进行训练时,出现如下报错: [ERROR] RUNTIME(3002)model execute error, retCode=0x91
克隆GitHub开源仓库文件到JupyterLab 在Notebook的JupyterLab中,支持从GitHub开源仓库Clone文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts Upload Fil
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的微调方案,包括SFT全参微调、LoRA微调、DPO训练方案。 DPO(Direct Preference
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的不同训练阶段方案,包括指令监督微调、DPO偏好训练、RM奖励模型训练、PPO强化训练方案。 DPO(Direct
# 构建最终容器镜像 FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 # 安装 vim和curl 工具(依然使用华为开源镜像站) RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的mllm_train/t
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的mllm_train/tr
在ModelArts中如何将图片划分到验证集或者训练集? 目前只能指定切分比例,随机将样本划分到训练集或者验证集,不支持指定。 切分比例的指定: 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
日志提示"No CUDA-capable device is detected" 问题现象 在程序运行过程中,出现如下类似错误。 1.‘failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected’
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
# 构建最终容器镜像 FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 # 安装 vim和curl 工具(依然使用华为开源镜像站) RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak
pu/Bunny_Llama路径下。 cd /home/ma-user/aigc_train/torch_npu/Bunny_Llama 升级容器pip。 /home/ma-user/anaconda3/envs/PyTorch-2.1.0/bin/python3.9 -m pip
推理部署使用场景 AI模型开发完成后,在ModelArts服务中可以将AI模型创建为模型,将模型快速部署为推理服务,您可以通过调用API的方式把AI推理能力集成到自己的IT平台,或者批量生成推理结果。 图1 推理简介 准备推理资源:根据实际情况选择部署服务所需要的资源类型。Mod
您即将访问非华为云网站,请注意账号财产安全