检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
endpoints_response Array of Endpoints objects 实例私有IP信息。 flavor String 实例规格名称。 id String 实例ID。 key_pair_name String 密钥对名称。 name String 实例名称。 order_id
endpoints_response Array of Endpoints objects 实例私有IP信息。 flavor String 实例规格名称。 id String 实例ID。 key_pair_name String 密钥对名称。 name String 实例名称。 order_id
apis参数代码示例。 确认信息填写无误,单击“立即创建”,完成模型创建。 在模型列表中,您可以查看刚创建的模型及其对应的版本。当模型状态变更为“正常”时,表示模型创建成功。在此页面,您还可以创建新版本、快速部署服务、发布模型等操作。 后续操作 部署服务:在“模型列表”中,单击模
投机推理使用说明 什么是投机推理 传统LLM推理主要依赖于自回归式(auto-regressive)的解码(decoding)方式,每步解码只能够产生一个输出token,并且需要将历史输出内容拼接后重新作为LLM的输入,才能进行下一步的解码。为了解决上述问题,提出了一种投机式推理
克隆GitHub开源仓库文件到JupyterLab 在Notebook的JupyterLab中,支持从GitHub开源仓库Clone文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts Upload Fil
数据输出通道描述信息。 表11 AlgorithmCreateEngine 参数 是否必选 参数类型 描述 engine_id 否 String 算法选择的引擎规格ID。 engine_name 否 String 算法选择的引擎版本名称。若填入engine_id则无需填写。 engine_version
如何切分ModelArts数据集? 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只能是0~1区间内的数。设置好“训练集比例”后,“验证集
Lite Server使用流程 ModelArts Lite Server提供多样化的xPU裸金属服务器,赋予用户以root账号自主安装和部署AI框架、应用程序等第三方软件的能力,为用户打造专属的云上物理服务器环境。用户只需轻松选择服务器的规格、镜像、网络配置及密钥等基本信息,即
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
# 构建最终容器镜像 FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 # 安装 vim和curl 工具(依然使用华为开源镜像站) RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak
MindSpore日志提示“ retCode=0x91, [the model stream execute failed]” 问题现象 使用mindspore进行训练时,出现如下报错: [ERROR] RUNTIME(3002)model execute error, retCode=0x91
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的微调方案,包括SFT全参微调、LoRA微调、DPO训练方案。 DPO(Direct Preference
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
在ModelArts中如何将图片划分到验证集或者训练集? 目前只能指定切分比例,随机将样本划分到训练集或者验证集,不支持指定。 切分比例的指定: 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的不同训练阶段方案,包括指令监督微调、DPO偏好训练、RM奖励模型训练、PPO强化训练方案。 DPO(Direct
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的不同训练阶段方案,包括指令监督微调、DPO偏好训练、RM奖励模型训练、PPO强化训练方案。 DPO(Direct
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的mllm_train/t
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的mllm_train/tr