检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Server服务器。本节介绍如何查看Lite Server服务器的详细信息,包括名称/ID、规格、镜像等信息。 在弹性节点Server的节点列表页中,可以查看Server节点的状态、创建时间、计费模式、实例规格名称、核心硬件配置、私网IP地址和绑定的虚拟私有云名称。 图1 查看Server节点
指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epo
本。 如果您当前使用的浏览器版本过低,将在一定程度上影响页面的显示效果,系统会提示您尽快对浏览器进行升级。 如果您当前使用的浏览器不支持访问管理控制台,系统会建议您对浏览器进行升级或安装支持的浏览器。 表1 PC端浏览器兼容性一览表 浏览器类型 版本 操作系统 兼容性 Internet
调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调用获取训练作业支持的公共规格接口获取训练作业支持的资源规格。 调用获取训练作业支持的AI预置框架接口查看训练作业支持的引擎类型和版本。 调用创建算法接口创建一个算法,记录算法id。
件夹中。 下载完成后,将数据上传至SFS相应目录中。由于数据集过大,推荐先通过obsutil工具将数据集传到OBS桶后,再将数据集迁移至SFS。 在本机机器上运行,通过obsutil工具将本地数据集传到OBS桶。 # 将本地数据传至OBS中 # ./obsutil cp ${数据集所在的本地文件夹路径}
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
中,单击“购买套餐包”,进入“购买套餐包”页面。可根据需要,自行购买适用规格的套餐包。 适用场景 ModelArts服务支持购买套餐包,根据用户选择使用的资源不同进行收费。您可以根据业务需求选择使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础
代码中ModelLink、MindSpeed已升级到最新版本,Python三方依赖版本已升级,其中: MindSpeed的版本升级到commitID=4ea42a23 ModelLink的版本升级到commitID=8f50777 transformers版本升级到4.45.0 peft版本升级到0.12.0 训练支持的模型列表
代码中ModelLink、MindSpeed已升级到最新版本,Python三方依赖版本已升级,其中: MindSpeed的版本升级到commitID=4ea42a23 ModelLink的版本升级到commitID=8f50777 transformers版本升级到4.45.0 peft版本升级到0.12.0 训练支持的模型列表
通过JupyterLab在线使用Notebook实例进行AI开发 通过PyCharm远程使用Notebook实例 通过VS Code远程使用Notebook实例 通过SSH工具远程使用Notebook 管理Notebook实例 使用CodeLab免费体验Notebook ModelArts CLI命令参考 在Notebook中使用Moxing命令
模式,全量节点和增量节点分别占用2张卡,一共使用4张卡。 配置tools工具根目录环境变量 使用AscendCloud-LLM发布版本进行推理,基于AscendCloud-LLM包的解压路径配置tool工具根目录环境变量: export LLM_TOOLS_PATH=${root
prefill特性 支持automatic prefix caching 支持multi-lora特性 支持W4A16、W8A16和W8A8量化 升级vLLM 0.6.3 支持流水线并行 说明:具体模型支持的特性请参见大模型推理指导文档 LLM开源大模型基于Lite Server适配PyTorch
“点击上传”或拖动文件,单击“确认上传”启动上传。 上传单个超过5GB的文件时,请使用Gallery CLI工具。CLI工具的获取和使用请参见Gallery CLI配置工具指南。 文件合集大小不超过50GB。 文件上传完成前,请不要刷新或关闭上传页面,防止意外终止上传任务,导致数据缺失。
prefill特性 支持automatic prefix caching 支持multi-lora特性 支持W4A16、W8A16和W8A8量化 升级vLLM 0.6.0 LLM开源大模型基于Lite Server适配PyTorch NPU推理指导 LLM开源大模型基于Standard适配PyTorch
prefill特性 支持automatic prefix caching 支持multi-lora特性 支持W4A16、W8A16和W8A8量化 升级vLLM 0.6.3 说明:具体模型支持的特性请参见大模型推理指导文档 LLM开源大模型基于Lite Server适配PyTorch NPU推理指导
模式,全量节点和增量节点分别占用2张卡,一共使用4张卡。 配置tools工具根目录环境变量 使用AscendCloud-LLM发布版本进行推理,基于AscendCloud-LLM包的解压路径配置tool工具根目录环境变量: export LLM_TOOLS_PATH=${root
indices_out_cuda_frame failed with error code 0” 问题现象 pytroch1.3镜像中,去升级了pytroch1.4的版本,导致之前在pytroch1.3跑通的代码报错如下: “RuntimeError:max_pool2d_wit
写性能。条带化模式的存储池不支持扩容。 新增规格 支持添加多个规格。限制如下: 添加的多个规格项中,不能有相同的规格。 选择多个规格的CPU架构必须相同。例如都是X86,或者都是ARM。 如果选择了多个GPU或NPU规格,由于不同规格的参数网络平面不互通,分布式训练时训练速度会受
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的