检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。
框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。
据。控制台上传无需工具下载或多余配置,在少量数据上传时,更加便捷高效。 如果您的数据量较大或数据文件较多,建议选择OBS Browser+或obsutil工具上传。OBS Browser+是一个比较常用的图形化工具,支持完善的桶管理和对象管理操作。推荐使用此工具创建桶或上传对象。
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“损失变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
在新版本的应用开发页面,您可以基于上一版本的工作流配置,更新工作流开发的各个步骤,重新部署服务。 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
据。控制台上传无需工具下载或多余配置,在少量数据上传时,更加便捷高效。 如果您的数据量较大或数据文件较多,建议选择OBS Browser+或obsutil工具上传。OBS Browser+是一个比较常用的图形化工具,支持完善的桶管理和对象管理操作。推荐使用此工具创建桶或上传对象。
在新版本的应用开发页面,您可以基于上一版本的工作流配置,更新工作流开发的各个步骤,重新部署服务。 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高
自然语言处理套件 自然语言处理套件为客户提供自然语言处理的自定制工具,旨在帮助客户高效地构建行业、领域的高精度文本处理模型,可应用于政府、金融、法律等行业。 自然语言处理套件提供了预置工作流,覆盖多种场景,支持自主上传训练数据,自主构建和升级高精度识别模型。用户自定义模型精度高,识别速度快。
据。控制台上传无需工具下载或多余配置,在少量数据上传时,更加便捷高效。 如果您的数据量较大或数据文件较多,建议选择OBS Browser+或obsutil工具上传。OBS Browser+是一个比较常用的图形化工具,支持完善的桶管理和对象管理操作。推荐使用此工具创建桶或上传对象。
行业套件介绍 自然语言处理套件为客户提供自然语言处理的自定制工具,旨在帮助客户高效地构建行业、领域的高精度文本处理模型,可应用于政府、金融、法律等行业。 预置工作流 自然语言处理套件当前提供了通用文本分类工作流、多语种文本分类工作流和通用实体抽取工作流,提供高精度文本分类预测模型