检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
# 安装量化模块的脚本 ... 具体操作如下: 配置需要使用的NPU卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi
元数据。 检查环境。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker
Loss收敛情况(示意图) 注:ppo训练结束不会打印性能。建议根据保存路径下的trainer_log.jsonl文件的最后一行总的训练steps和时间来判断性能 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.910)
}/nodepools 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 pool_name 是 String 资源池名称。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数
custom为自定义数据集。 --tokenizer:tokenizer路径,可以是huggingface的权重路径。backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b,
Loss收敛情况(示意图) ppo训练结束不会打印性能。建议根据保存路径下的trainer_log.jsonl文件的最后一行总的训练steps和时间来判断性能。 图3 trainer_log.jsonl文件 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch
ModelArts CLI命令功能介绍 功能介绍 ModelArts CLI,即ModelArts命令行工具,是一个跨平台命令行工具,用于连接ModelArts服务并在ModelArts资源上执行管理命令。用户可以使用交互式命令行提示符或脚本通过终端执行命令。为了方便理解,下面将ModelArts
/home/ma-user/AscendCloud-OPP-*.zip RUN pip install /home/ma-user/ascend_cloud_ops-1.0.0-py3-none-any.whl RUN pip install /home/ma-user/cann_ops-1
有完全的访问权限,可以重置用户密码、分配用户权限等。由于账号是付费主体,为了确保账号安全,建议您不要直接使用账号进行日常管理工作,而是创建IAM用户并使用他们进行日常管理工作。 IAM用户 由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。 在我的凭
obs_path=base_bucket_path + 'train/') 参数解释: code_dir:必选参数,训练脚本所在的目录。在本地调试的情况下,必须是notebook目录,不能是OBS目录。 boot_file:必选参数,训练启动文件,在code_dir目录下。 obs_path:在多机分布式调测时必选
元数据。 检查环境。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker
分离部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
和all,默认是all。 -tags / --tags String 否 指定查询的DLI队列tags。 -pn / --page-num Int 否 DLI队列页索引,默认是第1页。 -ps / --page-size Int 否 每页显示的DLI队列数量,默认是20。 示例:
-auth / --auth String 否 鉴权方式,支持PWD(用户名密码)、AKSK(access key和secret key),默认是PWD。 -rp / --region-profile String 否 指定ModelArts region配置文件信息。 -a / --account
找训练作业。 操作一:单击“只显示自己”按钮,训练作业列表仅显示当前子账号下创建的训练作业。 操作二:按照名称、ID、作业类型、状态、创建时间、算法、资源池等条件筛选的高级搜索。 操作三:单击作业列表右上角“刷新”图标,刷新作业列表。 操作四:自定义列功能设置。 图1 查找训练作业
16:30:30间产生费用 包年/包月:2023/04/18 16:30:30 约束限制 专属资源池计费模式为“按需计费”。 只有订购实例状态是“使用中”的资源才能变更资费。 计费模式变更只支持以专属资源池为粒度进行整体变更,不支持以规格为粒度进行部分变更。 一个专属资源池的所有节点
软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-3rdLLM-6.3.905-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的vLLM 0.3.2推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E