检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
因此,城市政务场景面临着众多碎片化AI需求场景。 传统的AI开发模式需要对每种目标类别单独采集数据、训练模型,依赖专家经验进行算法参数调优,最后才能上线应用。基于ModelArts Studio平台开发工作流,将数据标注、模型训练、部署上线等繁杂的流程固化为一个流水线的步骤。
评测数据集的创建步骤与训练数据集一致,本章节仅做简单介绍,详细步骤请参见使用数据工程构建NLP大模型数据集。 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“数据工程 > 数据获取”,单击界面右上角“创建导入任务”。
模型训练发布完成后,可以通过导出模型功能将本局点训练的模型导出,导出后的模型可以通过导入其他局点盘古大模型,导入至其他局点进行使用。
通过整合上述功能,数据工程在AI研发中不仅帮助用户高效构建高质量的训练数据集,还通过全流程的数据处理和管理,探索数据与模型性能的内在联系,为模型训练和应用提供坚实的数据基础,推动了模型的精确训练与持续优化,提升了AI应用开发的效率和成果的可靠性。 父主题: 产品功能
预训练的NLP大模型不支持评测。 创建NLP大模型自动评测任务 创建NLP大模型自动评测任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型评测”,单击界面右上角“创建评测任务”。
这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台提供了图文类、图片类清洗算子,算子能力清单见表1。
数据标注:数据标注旨在为无标签的数据集添加准确的标签,标注数据的质量直接影响模型的训练效果和精度。针对不同数据集平台支持人工标注与AI预标注两种形式。 其中,图片Caption、视频Caption标注项支持AI预标注功能。
产品优势 预置多,数据工程“易” ModelArts Studio大模型开发平台预置多种数据处理AI算子,多种标注工具,满足用户多任务多场景需求,提高开发/标注效率>10X。
与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
准备工作 申请试用盘古大模型服务 订购盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间 04 AI一站式流程 通过一站式流程,完成从数据导入、数据加工、数据发布、模型训练、模型压缩、模型部署、模型评测到模型调用,全面掌握盘古大模型的开发过程。
支持区域: 西南-贵阳一 使用盘古预置NLP大模型进行文本对话 应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 支持区域: 西南-贵阳一 使用盘古应用百宝箱生成创意活动方案
由于数据工程需要支持对接盘古大模型或三方大模型,为了使这些数据集能够被这些大模型正常训练,平台支持发布不同格式的数据集。 当前支持默认格式、盘古格式: 默认格式:数据工程功能支持的原始格式。 盘古格式:使用盘古大模型训练时所需要使用的数据格式。
发布预测类数据集 开发盘古预测大模型 训练预测大模型 进行模型的训练,如微调训练方式。 训练预测大模型 部署预测大模型 模型训练完成后,执行模型的部署操作。 部署预测大模型 管理盘古大模型空间资产 管理盘古数据资产 管理从AI Gallery订阅或已发布的数据集。
数据打标 预训练文本分类 针对预训练文本进行内容分类,例如新闻、教育、健康等类别,支持分析语种包括:中文、英文。 通用质量评估 针对文本进行通用质量的评估,例如流畅度、清晰度、丰富度等。
该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。
变更计费模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费,数据智算单元、数据通算单元默认采用按需计费,训练单元采用包周期和按需计费两种方式。 盘古大模型使用周期内不支持变更配置。
该过程能够在一定程度上扩展数据集,增强训练模型的多样性和泛化能力。 标注数据集 为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。
在“资源订购”页签可进行数据资源、训练资源、推理资源的续费操作。 父主题: 计费FAQ
Pangu-AI4S-Ocean_Regional_24h-20241130 2024年11月发布的版本,用于区域海洋基础要素预测,1个训练单元起训及1个实例部署。
提高训练效率 发布符合标准的数据集可以大幅提升数据处理效率,减少后续调整工作,帮助用户快速进入模型训练阶段。 数据集发布是数据工程中的关键环节,通过科学的数据比例调整和格式转换,确保数据集符合模型训练要求。