检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。
表3 合规度校验规则说明 校验项 说明 个人隐私 校验数据中是否存在个人隐私信息,例如,身份证号、手机号、固定电话、Email地址、护照号、车牌号、军官证、车架号、GPS地址、IP地址、MAC地址和IMEI码等。 敏感关键词 校验数据中是否存在敏感关键字,如涉政信息。
父主题: 典型训练问题和优化策略
清洗数据集(可选) 清洗算子功能介绍 获取数据清洗模板 创建数据集清洗任务 父主题: 准备盘古大模型训练数据集
父主题: 典型训练问题和优化策略
通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。
因此,如果您的场景是基于某个领域内的知识问答,那么采用微调的手段确实能从一定程度上提升效果,但如果综合考虑训练的耗时和模型后续的持续迭代,采用搜索+问答的方案则更具性价比。 父主题: 典型训练问题和优化策略
图1 发布数据集 父主题: 准备盘古大模型训练数据集
父主题: 典型训练问题和优化策略
父主题: 典型训练问题和优化策略
这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。
父主题: 典型训练问题和优化策略
父主题: 准备盘古大模型训练数据集
比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。 父主题: 典型训练问题和优化策略
略 略 训练模型 自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate) 7.5e
请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 父主题: 典型训练问题和优化策略
获取数据清洗模板 在清洗数据时,用户可以通过组合不同的数据清洗算子来实现数据清洗功能。平台提供了多种数据清洗模板,用户可以直接套用这些模板进行数据清洗。 数据清洗模板获取方式如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,进入“清洗模板”页面,在该页面查看预置的数据清洗模板
清洗算子功能介绍 数据清洗是提高数据质量的重要环节,包括去除异常的字符、去除表情符号和去除个人敏感内容等,经过清洗的数据可以提升训练阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。
数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 典型训练问题和优化策略
训练模型 自监督训练: 不涉及 有监督微调: 该场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 6 学习率(learning_rate) 7.5e-