检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
node_count Integer 训练作业选择的资源副本数。 pool_id String 训练作业选择的资源池ID。 flavor_detail FlavorDetail object 训练作业、算法的规格信息(该字段只有公共资源池存在)。
训练作业 创建训练作业 查询训练作业列表 查询训练作业版本详情 删除训练作业版本 查询训练作业版本列表 创建训练作业版本 停止训练作业版本 更新训练作业描述 删除训练作业 获取训练作业日志的文件名 查询预置算法 查询训练作业日志 父主题: 训练管理(旧版)
训练管理 训练作业 资源和引擎规格接口
train_instance_type 是 String 训练作业选择的资源规格,请参考查询资源规格列表 train_instance_count 是 int 训练作业计算节点个数。
训练管理(旧版) 训练作业 训练作业参数配置 可视化作业 资源和引擎规格接口 作业状态参考 父主题: 历史API
表2 get_job_log请求参数说明 参数 是否必选 参数类型 描述 task_id 否 String 要查看哪个工作节点的日志,默认值为"worker-0";如果在创建训练作业时参数train_instance_count选择了2,则可选值为"worker-0","worker
支持通过算法资产、自定义算法、AI Gallery订阅算法创建训练作业,使训练作业的创建更灵活、易用 提供实验管理能力,用户通常需要调整数据集、调整超参等进行多轮作业从而选择最理想的作业,模型训练支持统一管理多个训练作业,方便用户选择最优的模型 提供训练作业的事件信息(训练作业生命周期中的关键事件点
最小值:1 pool_id String 训练作业选择的资源池ID。 flavor_detail flavor_detail object 训练作业、算法的规格信息。 表43 flavor_detail 参数 参数类型 描述 flavor_type String 资源规格的类型。
查询训练作业列表 功能介绍 根据指定条件查询用户创建的训练作业。 URI GET /v1/{project_id}/training-jobs 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。
表1 必须修改的训练超参配置 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
MODEL_NAME llama2-13b 输入选择训练的模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。
MODEL_NAME llama2-13b 输入选择训练的模型名称。 RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。
compute_environment: LOCAL_MACHINE debug: false distributed_type: MULTI_NPU downcast_bf16: 'no' gpu_ids: all machine_rank: 0 main_training_function
training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status.tasks字段中获取。
最小值:1 pool_id String 训练作业选择的资源池ID。 flavor_detail flavor_detail object 训练作业、算法的规格信息。 表43 flavor_detail 参数 参数类型 描述 flavor_type String 资源规格的类型。
训练时会自动下载OBS中{training-project}目录下的数据到训练容器的本地路径$MA_JOB_DIR/{training-project}/。
表2 get_job_log请求参数说明 参数 是否必选 参数类型 描述 task_id 否 String 要查看哪个工作节点的日志,默认值为"worker-0";如果在创建训练作业时参数train_instance_count选择了2,则可选值为"worker-0","worker
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。
sh diffusers_lora_train.sh 启动SDXL LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_sdxl_lora_train.sh 训练执行成功如下图所示。
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。