检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
最小值:1 pool_id String 训练作业选择的资源池ID。 flavor_detail flavor_detail object 训练作业、算法的规格信息。 表45 flavor_detail 参数 参数类型 描述 flavor_type String 资源规格的类型。
表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
查询训练作业版本详情 功能介绍 根据作业ID查看指定的训练作业详情。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions/{version_id} 参数说明如表1所示。
使用预置算法训练时,训练失败,报“bndbox”错误 问题现象 使用预置算法创建训练作业,训练失败,日志中出现如下报错。 KeyError: 'bndbox' 原因分析 用于训练的数据集中,使用了“非矩形框”标注。而预置使用算法不支持“非矩形框”标注的数据集。
cd /home/ma-user/diffusers sh diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。
在“训练作业”列表中,单击作业名称,进入训练作业详情页。 在训练作业详情页的左侧,可以查看此次训练作业的基本信息和算法配置的相关信息。 训练作业基本信息 表1 训练作业基本信息 参数 说明 “作业ID” 训练作业唯一标识。 “作业状态” 训练作业状态。
可能原因是跨区域算法同步或者创建共享存储超时 训练作业已排队,正在等待资源分配 训练作业排队失败 训练作业开始运行 训练作业运行成功 训练作业运行失败 训练作业被抢占 系统检测到您的作业疑似卡死,请及时前往作业详情界面查看并处理 训练作业已重启 训练作业已被手动终止 训练作业已被终止
模型训练 自动学习训练作业失败 父主题: 自动学习
training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 请求参数 无 响应参数 无 请求示例 如下以删除uuid为3faf5c03-aaa1-4cbe-879d-24b05d997347的训练作业为例。
node_count Integer 训练作业选择的资源副本数。 pool_id String 训练作业选择的资源池ID。 flavor_detail FlavorDetail object 训练作业、算法的规格信息(该字段只有公共资源池存在)。
模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常?
训练作业 创建训练作业 训练作业调测 查询训练作业列表 查询训练作业详情 更新训练作业描述 删除训练作业 终止训练作业 查询训练日志 查询训练作业的运行指标 父主题: 训练管理
训练的权重转换说明 以llama2-13b举例,使用训练作业运行0_pl_pretrain_13b.sh脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。
train_instance_type 是 String 训练作业选择的资源规格,请参考查询资源规格列表 train_instance_count 是 int 训练作业计算节点个数。
compute_environment: LOCAL_MACHINE debug: false distributed_type: MULTI_NPU downcast_bf16: 'no' gpu_ids: all machine_rank: 0 main_training_function
需要排查训练代码中是否有设置NCCL_SOCKET_IFNAME环境变量,该环境变量由系统自动注入,训练代码中无需设置。训练代码去除NCCL_SOCKET_IFNAME环境变量设置逻辑后,单击右侧“重建”,重新创建训练作业,提交训练作业后等待作业完成。