检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建AI助手 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > AI助手”,单击页面右上角“创建助手”。参考表1完成AI助手匹配。 表1 创建AI助手参数说明 参数分类 参数名称 参数说明 基本信息 助手名称 设置AI助手的名称。
即如果一个Token在训练集中出现的频率较高,那么模型在生成这个Token时会受到一定的惩罚。当的值为正数时,模型会更倾向于生成出现频率较低的Token,即模型会更倾向于使用不常见的词汇。 历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。
调测AI助手 在AI助手的创建页面可以直接进行调测,也可以在AI助手列表页进行调测。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > AI助手”,选择需要调测的AI助手,单击“调测”按钮。
调用AI助手API 获取AI助手API调用地址 登录盘古大模型套件平台。 左侧导航栏选择“应用开发 > AI助手”,选择需要运行的AI助手,单击“查看”。 图1 查看AI助手 在详情页面,AI助手API调用地址。
即如果一个Token在训练集中出现的频率较高,那么模型在生成这个Token时会受到一定的惩罚。当的值为正数时,模型会更倾向于生成出现频率较低的Token,即模型会更倾向于使用不常见的词汇。 历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。
父主题: AI助手
AI助手 什么是AI助手 配置AI助手工具 配置知识库 创建AI助手 调测AI助手 调用AI助手API
final LLM llm = LLMs.of(LLMs.OPENAI, LLMConfig.builder() .llmParamConfig(LLMParamConfig.builder().temperature(0.0).build())
应用场景 智能客服 在政企场景中,传统的智能客服系统常受限于语义泛化能力和意图理解能力,导致用户需求难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中
使用工具[meeting_room_status_query],传入参数"{\"start\": \"2024-05-08 08:00\", \"end\": \"2024-05-08 09:00\", \"meetingRoom\": \"A01\"}" 工具返回:available
面试问题生成 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 写作示例
Agent流式输出 Agent用于工具调用场景,与普通的LLM流式输出相比,区分了文本流与工具流。文本流将输出模型的思考过程和最终结果;工具流将输出工具的调用过程,而工具的调用的执行结果是通过监听获取的。 通过如下接口为Agent添加流式输出的回调: from pangukitsappdev.callback.StreamCallbackHandler
实例化Tool Tool分为StaticTool(静态工具)和DynamicTool(动态工具)两类。静态工具需要开发者事先定义好,即在编译期定义与实例化。对于动态工具,开发者可以在系统运行时动态构建,即在运行态定义与实例化。 StaticTool(静态工具) 静态工具可以通过注解的方式新增
实例化Tool Tool分为StaticTool(静态工具)和DynamicTool(动态工具)两类,静态工具需要开发者事先定义好,即在编译期定义与实例化;动态工具开发者可以在系统运行时动态构建,即在运行态定义与实例化。 StaticTool(静态工具) 静态工具可以通过继承Tool
Tool Retriever Agent在实际生产应用中往往涉及到的工具数量较多,如果把所用的工具全部添加至Agent会产生如下问题: 占用大量输入token。 和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具
监听Agent 一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听,输出中间步骤。 AgentListener的定义如下: class AgentListener(ABC): """Agent监听,允许对Agent的各个阶段进行处理
Agent流式输出 Agent用于工具调用场景,与普通的LLM流式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback
实例化Agent Agent实例化过程包括注册LLM和注册工具两个部分。 from pangukitsappdev.agent.react_pangu_agent import ReactPanguAgent from pangukitsappdev.api.llms.factory
Tool Retriever Agent在实际生产应用中往往涉及到的工具数量较多,如果把所用的工具全部添加至Agent会产生如下问题: 占用大量输入token。 和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具
监听Agent 一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听。 AgentListener的定义如下: public interface AgentListener { /** * Session启动时调用