检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
gpu_proc_restart: GPU原地热恢复 proc_restart: 进程原地重启 pod_reschedule: Pod级重调度 job_reschedule: Job级重调度 job_reschedule_with_taint: 隔离式Job重调度 end_recover_before_downgrade
#收缩公私钥文件权限 sed -i "s/ma-user/#ma-user/g" /etc/sudoers #不允许ma-user用户免密执行所有命令 } delete_sniff_compiler hardening_ssh_config Ascend镜像中存在
大量的弱表达能力的特征。 特征的数量并非重点,质量才是,总之强表达能力的特征最重要。 能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。
gpu_proc_restart: GPU原地热恢复 proc_restart: 进程原地重启 pod_reschedule: Pod级重调度 job_reschedule: Job级重调度 job_reschedule_with_taint: 隔离式Job重调度 end_recover_before_downgrade
则服务可以正常部署成功。 如果三次重试后依然没有足够的资源,则本次服务部署失败。参考以下方式解决: 如果是在公共资源池部署服务,可等待其他用户释放资源后,再进行服务部署。 如果是在专属资源池部署服务,在满足模型需求的前提下,尝试选用更小的容器规格或自定义规格,进行服务部署; 如果
维持模型训练不中断,保护长期项目免受时间与资源损耗,确保进展与收益。 大模型应用开发,帮助开发者快速构建智能Agents 在企业中,项目级复杂任务通常需要理解任务并拆解成多个问题再进行决策,然后调用多个子系统去执行。MaaS基于多个优质昇腾云开源大模型,提供优质Prompt模板
参信息。该参数会显示在微调工作流的“作业设置”页面的算法配置和超参数设置里面。代码示例请参见train_params.json示例。 “dataset_readme.md” 必选文件,数据集要求说明,定义了模型训练时对数据集的要求,会显示在微调工作流的“准备数据”页面。 自定义镜像规范(推理)
#运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py
#运行opencompass脚本 ├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 精度评测切换conda环境,
径下的内容会被自动下载至训练容器的“${MA_JOB_DIR}/demo-code”目录中,demo-code为OBS存放代码路径的最后一级目录,用户可以根据实际修改。 请注意不要将训练数据放在代码目录路径下。训练数据比较大,训练代码目录在训练作业启动后会下载至后台,可能会有下载
ces:metricData:list 查看服务的监控指标。 按需配置。 IEF IEF Administrator 管理边缘服务。 按需配置。 创建自定义策略时,建议将项目级云服务和全局级云服务拆分为两条策略,便于授权时设置最小授权范围。 委托 表3 部署上线所需委托 业务场景 依赖的服务 委托授权项 说明 配置建议
通用的推理业务及LLM推理业务迁移评估表 收集项 说明 实际情况(请填写) 项目名称 项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。 使用BertBase算法对用户在app上购买商品后的评论进行理解。 - CPU架构 X86/ARM,自有软件是否支持ARM。
增量训练不需要一次性存储所有的训练数据,缓解了存储资源有限的问题;另一方面,增量训练节约了重新训练中需要消耗大量算力、时间以及经济成本。 增量训练特别适用于以下情况: 数据流更新:在实际应用中,数据可能会持续更新,增量训练允许模型适应新的数据而不必重新训练。 资源限制:如果重新训练一个大型模型成本过高,增量训练可以是一个更经济的选择。
-广州、中国-香港、亚太-曼谷、亚太-新加坡、拉美-圣地亚哥 自动学习介绍 自动学习案例教程 Workflow Workflow(也称工作流,下文中均可使用工作流进行描述)本质是开发者基于实际业务场景开发用于部署模型或应用的流水线工具。在机器学习的场景中,流水线可能会覆盖数据标注
置信度,数值类型,范围0<=confidence<=1,表示机器标注的置信度。 creation_time String 创建该标注的时间。是用户写入标注的时间,不是Manifest生成时间。 annotated_by String 标注人。 annotation_format String
训练代码文件会在训练作业启动的时候被系统自动下载到训练容器的“${MA_JOB_DIR}/demo-code”目录中,“demo-code”为存放代码目录的最后一级OBS目录。例如,“代码目录”选择的是“/test/code”,则训练代码文件会被下载到训练容器的“${MA_JOB_DIR}/code”目录中。
Template RL,其余默认为Template DL。 表4 Status 参数 参数类型 描述 phase String 训练作业一级状态,状态值稳定不变,可选值如下: “Creating”、“Pending”、“Running”、“Failed”、“Completed”、
gpu_proc_restart: GPU原地热恢复 proc_restart: 进程原地重启 pod_reschedule: Pod级重调度 job_reschedule: Job级重调度 job_reschedule_with_taint: 隔离式Job重调度 end_recover_before_downgrade
LLaMA-VID ├── data │ ├── LLaMA-VID-Eval │ │ ├── MSVD-QA 步骤9 启动一级流水优化 export TASK_QUEUE_ENABLE=2 步骤10 修改msvd_eval.sh参数 修改scripts/video/eval/msvd_eval
训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。 训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如图1所示。 图1 专属资源池Ascend规格运行日志信息 训练mindspore-verification