检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LlamaRotaryEmbedding中的forward函数中增加self.inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查启动推理服务章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.906) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
LlamaRotaryEmbedding中的forward函数中增加self.inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错
NPU推理指导(6.3.906) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 父主题: LLM大语言模型训练推理
NPU推理指导(6.3.905) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 父主题: LLM大语言模型训练推理
LlamaRotaryEmbedding中的forward函数中增加self.inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错
w的原生接口。 当非MoXing代码中没有Adam名称范围时,需要修改非MoXing代码,在其中增加如下内容: with tf.variable_scope("Adam"): 在增加代码时不建议使用自定义“global_step”,推荐使用tf.train.get_or_create_global_step()。
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.907) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
LlamaRotaryEmbedding中的forward函数中增加self.inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题:
NPU推理指导(6.3.907) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理standard常见问题 父主题: LLM大语言模型训练推理
NPU推理指导(6.3.908) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:Standard大模型推理常见问题 父主题: LLM大语言模型训练推理
NPU推理指导(6.3.909) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:Standard大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于LIte Server适配PyTorch NPU推理指导(6.3.905) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 附录:工作负载Pod异常问题和解决方法
NPU推理指导(6.3.910) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 eagle 投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:Standard大模型推理常见问题
知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 准备工作 参考benchmark-准备工作,开始训练测试,具体步骤参考训练性能测试或训练精度测试,根据实际情况决定。 父主题: 训练benchmark工具
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理