检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接
GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。
数据集版本不合格 出现此问题时,表示数据集版本发布成功,但是不满足自动学习训练作业要求,因此出现数据集版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。
华北各省管局要求 北京管局要求 天津管局要求 河北管局要求 山西管局要求 内蒙古管局要求 父主题: 学习各地管局政策
西南各省管局要求 重庆管局要求 四川管局要求 贵州管局要求 云南管局要求 西藏管局要求 父主题: 学习各地管局政策
华东各省管局要求 上海管局要求 江苏管局要求 浙江管局要求 安徽管局要求 福建管局要求 山东管局要求 江西管局要求 父主题: 学习各地管局政策
出作为输入)的预测和基于业务驱动因素(例如新业务上云或区域扩张)的预测,可以有效改进并提升企业的财务预测准确率。 相关服务和工具 使用成本中心的成本分析,可以根据客户的历史支出预测未来时间范围的成本。成本分析的成本和使用量预测,会参考不同的计费模式特征,结合机器学习和基于规则的模
批量服务可对批量数据进行推理,完成数据处理后自动停止。 图2 不同类型的推理作业使用场景 父主题: 使用ModelArts Standard部署模型并推理预测
项目创建完成后,将会自动跳转至新版自动学习页面,并开始运行,当数据标注节点的状态变为“等待操作”时,需要手动进行确认数据集中的数据标注情况,也可以对数据集中的数据进行标签的修改,数据的增加或删减。 图1 数据标注节点状态 图片标注 在新版自动学习页面单击“实例详情”按钮,前往数据标
科学计算大模型支持训练的模型类型有:中期天气要素预测模型、区域中期海洋智能预测模型。 中期天气要素预测模型选择建议: 科学计算大模型的中期天气要素预测模型,可以对未来一段时间的天气进行预测,具备以下优势: 高时间精度:中期天气要素预测模型可以预测未来1、3、6、24小时的天气情况。高时间
模型训练 自动学习训练作业失败 父主题: 自动学习
查看具体内容。 进入到具体的章节之后,可以在资料模块完成知识的学习,在作业模块完成学习知识的自我检查。 单击左侧导航栏可以切换不同的学习内容。 预览 按钮,可以打开或关闭资料的全局预览。 全屏 按钮,可以最大化实现资料预览。 学习返回。 方案一:通过Classroom的导航链接进行返回(推荐此种方案)。
表打开任务详情,可以查看更详细的计算过程信息。 图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 联邦预测作业
访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测
job_partner String 参与方信息,最大长度128 is_single_predict Boolean 单方还是双方预测 metrics String 联邦学习模型评估指标 请求示例 查询训练作业下的成功模型 get https://x.x.x.x:12345/v1/{proj
使用自动学习实现零代码AI开发 自动学习简介 使用自动学习实现图像分类 使用自动学习实现物体检测 使用自动学习实现预测分析 使用自动学习实现声音分类 使用自动学习实现文本分类 使用窍门
EntityTrapFaultID 错误码。 对系统的影响 温度过低可能导致单板工作异常,影响业务。 可能原因 外界温度过低。 处理步骤 测量一下外界环境的实际温度,如果过低则需要使用空调、暖气等调节室温。 如果外界环境温度正常,则可能是低温门限值设置的过高,需要通过命令temperature
模型发布 模型发布失败 父主题: 自动学习
项目创建完成后,将会自动跳转至自动学习页面,并开始运行。单击“数据标注”节点,当状态变为“等待操作”时,需要手动进行确认数据集中的数据标注情况,也可以对数据集中的数据进行标签的修改,数据的增加或删减。 图1 数据标注节点状态 图片标注 在新版自动学习页面的数据标注节点单击“实例详情”按钮,前往数据标注页面。
AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。