检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Boolean SMN开关。 subscription_id String SMN消息订阅ID。 exeml_template_id String 自动学习模板ID。 last_modified_at String 最近一次修改的时间。 package WorkflowServicePackege
此处以订阅算法举例,您也可以自己准备算法。 从AI Gallery订阅一个图像分类的算法进入AI Gallery>资产集市>算法,搜索自动学习算法-图像分类。 单击算法右侧的“订阅”。 在弹出的窗口中,勾选“我已阅读并同意 《数据安全与隐私风险承担条款》 和 《华为云AI Gal
--block-size:kv-cache的block大小,推荐设置为128。当前仅支持64和128。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe
--block-size:kv-cache的block大小,推荐设置为128。当前仅支持64和128。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe
array images = np.array(images,dtype=np.float32) # 对传入的多个样本做batch处理,shape保持和训练时输入一致 images.resize((len(data), 784))
认为None即不启用量化;支持w8a8、w8a16,需配套对应的权重使用。 GPU_MEMORY_UTILIZATION:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 脚本运行完成后,测试结果输出在终端。 父主题: 主流开源大模型基于Server适配PyTorch
必填,选择训练代码文件所在的OBS目录。 需要提前将代码上传至OBS桶中,目录内文件总大小要小于或等于5GB,文件数要小于或等于1000个,文件深度要小于或等于32。 训练代码文件会在训练作业启动的时候被系统自动下载到训练容器的“${MA_JOB_DIR}/demo-code”目录中,
heduler-steps个token。开启投机推理后无需配置该参数。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe
r_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe
valid_data: [ "your val data path" ] # 训练集和验证集可以相同 split: 1,0,0 # 训练集,验证集,测试集比例 num_workers: 8 # 数据加载器的工作线程数 force_train: True # 在加载checkpoint时允许missing
r_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 服务启动后,会打印如下类似信息。 server
heduler-steps个token。开启投机推理后无需配置该参数。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe
工作目录、容器镜像的数据和镜像元数据;另一块用于Kubelet组件和EmptyDir临时存储等。通过“指定磁盘空间”参数设置这两块分区大小的比例。容器引擎空间的剩余容量将会影响镜像下载和容器的启动及运行。 容器盘的类型是本地盘时,不支持设置“指定磁盘空间”。 容器盘高级配置-容器引擎空间大小
r_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 高阶参数说明: --enable-
r_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe
模型推理支持的max-model-len长度不同,具体差异请参见表1。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型
r_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe
举例:参数可以设置为0.0.0.0。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe
举例:参数可以设置为0.0.0.0。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe
r_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-exe