检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
除了人工标注外,ModelArts还提供了智能标注功能,快速完成数据标注,为您节省70%以上的标注时间。智能标注是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。 目前只有“图像分类”和“物体检测”类型的数据集支持智能标注功能。 团队标注
TEST:指明该对象用于测试。 INFERENCE:指明该对象用于推理。 如果没有给出该字段,则使用者自行决定如何使用该对象。 id 否 此参数为系统导出的样本id,导入时可以不用填写。 annotation 否 如果不设置,则表示未标注对象。annotation值为一个对象列表,详细参数请参见表3。
source_job_version String 来源训练作业的版本。 source_type String 模型来源的类型。 当模型为自动学习部署过来时,取值为“auto”。 当模型是用户通过训练作业或OBS模型文件部署时,此值为空。 model_type String 模型类型
ime时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 specification 是 String 资源规格,当前版本可选modelarts
属资源池容器引擎空间不会造成额外费用增加。 更多信息,请参见导入AI应用对镜像大小的约束限制。 自动学习项目中,在完成模型部署后,其生成的模型也将自动上传至模型列表中。但是自动学习生成的模型无法下载,只能用于部署上线。 Standard推理服务部署 只支持使用专属资源池部署的在线
float,一般不建议用户修改 TPE算法 TPE算法全称Tree-structured Parzen Estimator,是一种利用高斯混合模型来学习超参模型的算法。在每次试验中,对于每个超参,TPE为与最佳目标值相关的超参维护一个高斯混合模型l(x),为剩余的超参维护另一个高斯混合模型
a"。 否 str train_evaluate_sample_ratio 训练-验证集比例,默认值为"1.00"。取值范围为0-1.00, 例如"0.8"表示训练集比例为80%,验证集比例为20%。 否 str或者Placeholder clear_hard_property 是否清除难例,默认为“True”。
ime时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 specification String 资源规格,当infer_t
String 模型名称。 model_version String 模型版本。 source_type String 模型来源,当模型是由自动学习产生时,返回此字段,取值为:auto。 status String 模型实例运行状态,取值为: ready:已就绪(所有实例已启动) co
false:发布时不清除数据集已有的usage信息 train_evaluate_sample_ratio 否 String 发布版本时切分训练验证比例,默认为1.00,即全部分为训练集。 version_format 否 String 数据集版本格式。可选值如下: Default:默认格式
调试场景。 环境开通指导请参考Notebook环境创建。 ModelArts Lite DevServer 该环境为裸机开发环境,主要面向深度定制化开发场景。 环境开通指导请参考DevServer资源开通;环境配置指导请参考Snt9B裸金属服务器环境配置指南。 本文基于ModelArts
重置参数说明 参数名称 说明 操作系统 选择下拉框中支持的操作系统。 配置方式 选择重置节点的配置方式。 按节点比例:重置任务包含多个节点时,可以设置同时被重置节点的最高比例。 按实例数量:重置任务包含多个节点时,可以设置同时被重置节点的最大个数。 驱动版本 可以在下拉框中指定重置节点的驱动版本。
扣费。在“费用中心 > 账单管理 > 流水和明细账单 > 流水账单”中,“消费时间”即按需产品的实际使用时间。 查看自动学习和Workflow的账单 自动学习和Workflow运行时,在进行训练作业和部署服务时,会产生不同的账单。 训练作业产生的账单可参考查看训练作业的账单查询。
模型运行时环境。 model_metrics String 模型精度信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_type String 模型类型,取值为TensorFlow/Image/PyTorch/Template/MindSpore。
重置参数说明 参数名称 说明 操作系统 选择下拉框中支持的操作系统。 配置方式 选择重置节点的配置方式。 按节点比例:重置任务包含多个节点时,同时被重置节点的最高比例。 按节点数量:重置任务包含多个节点时,同时被重置节点的最大个数。 单击“操作记录”可查看当前资源池重置节点的操作
true, "default": 0.001, "help": "学习率" }, { "name": "
根据您的实际情况选择“自定义模型”或者“订阅模型”。 “选择模型及版本” 选择状态“正常”的模型及版本。 “分流” 设置当前实例节点的流量占比,服务调用请求根据该比例分配到当前版本上。 如您仅部署一个版本的模型,请设置为100%。如您添加多个版本进行灰度发布,多个版本分流之和设置为100%。 “实例规格”
source_type String 此规格应用于模型的类型,取值为空或auto,默认为空,代表是用户自己产生的模型;取值为auto时,代表是自动学习训练的模型,计费方式有差别。 is_free Boolean 当前规格是否是免费规格,“true”表示是免费规格。 over_quota Boolean
标签:您可以选择全部标签,或者基于您指定的标签,选中其中一个或多个。 文件名或目录:根据文件名称或者文件存储目录筛选。 标注人:选择执行标注操作的账号名称。 样本属性:表示自动分组生成的属性。只有启用了自动分组任务后才可使用此筛选条件。 数据属性:筛选数据的来源,选择“全部”或“推理”。 图1 筛选条件
一般情况包括如下两种内容类型: “application/json”,发送json数据。 “multipart/form-data”,上传文件。 说明: 针对机器学习类模型,仅支持“application/json” data 在线服务-非必选 批量服务-必选 String 请求体以json schema描述。参数说明请参考官方指导。