检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”进行预测。此处提供一个预测样例图供使用。 步骤6:清除资源 为避免产生不必要的费用,通过此示例学习订阅算法的使用后,建议您清除相关资源,避免造成资源浪费。 停止在线服务:在“在线服务”页面,单击对应服务操作列的“停止”。 删除训练作业:
Integer 同步类型。可选值如下: 0:不同步 1:同步数据 2:同步标签 3:同步数据和标签 repetition 否 Integer 每个样本由多少人标注,最少为1。 synchronize_auto_labeling_data 否 Boolean 是否同步更新智能标注数据。可选值如下:
ime时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 deploy_timeout_in_seconds 否 Integer
从第三方元模型导入,则为空,默认值为空。 source_type 否 String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。 model_type 是 String 模型类型
# 加载断点 checkpoint = torch.load(local_ckpt_file) # 加载模型可学习参数 model.load_state_dict(checkpoint['net']) # 加载优化器参数 optimizer
# 加载断点 checkpoint = torch.load(local_ckpt_file) # 加载模型可学习参数 model.load_state_dict(checkpoint['net']) # 加载优化器参数 optimizer
(v0.3.2)不同模型推理支持的max-model-len长度说明。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型
”页签中,标签的信息也将随着标注步骤进行更新,如增加的标签名称、标签对应的图片数量。 快速复核 当前的标注作业无法实现批量复核,如果有某一样本的标签修改或者删除,只能进入到标注页面详情进行,操作繁琐。为了简化用户操作,实现此功能,用户可以批量进行标注信息的审核或者修改,提升用户效率。
ore-GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎 CPU/GPU 是 是 mindquantum0.9.0-mindspore2.0.0-cuda11
从第三方元模型导入,则为空,默认值为空。 source_type 否 String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。 model_type 是 String 模型类型
ime时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 { "service_name": "mnist",
ength”;如果设置过大,会占用过多显存,影响kvcache的空间。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型
(v0.3.2)不同模型推理支持的max-model-len长度说明。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型
SMN开关。 subscription_id 否 String SMN消息订阅ID。 exeml_template_id 否 String 自动学习模板ID。 last_modified_at 否 String 最近一次修改的时间。 package 否 WorkflowServicePackege
AOE自动调优更多介绍可参考Ascend转换工具功能说明。 自动高性能算子生成工具 自动高性能算子生成工具AKG(Auto Kernel Generator),可以对深度神经网络模型中的算子进行优化,并提供特定模式下的算子自动融合功能,可提升在昇腾硬件后端上运行模型的性能。 AKG的配置也是在模型转换阶段进
Boolean SMN开关。 subscription_id String SMN消息订阅ID。 exeml_template_id String 自动学习模板ID。 last_modified_at String 最近一次修改的时间。 package WorkflowServicePackege
c字段配套。 weight Integer 权重,分配到此模型的流量权重。 source_type String 模型来源,当模型是由自动学习产生时返回此字段,取值为auto。 model_id String 模型ID。 src_path String 批量任务输入数据的OBS路径,例如:“https://xxx
ime时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 deploy_timeout_in_seconds 否 Integer
模型精度信息,从配置文件读取,可不填。非模板参数 source_type 否 String 模型来源的类型,当前仅可取值“auto”,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业和其他方式部署的模型不设置此值。默认值为空。非模板参数 dependencies 否
r_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 高阶参数说明: --enable-