检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
start_time_begin 是 String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end 是 String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours 否 Long 起报时间间隔小时数,默认6。取值范围:[1
模型能力与规格 盘古NLP大模型能力与规格 盘古CV大模型能力与规格 盘古科学计算大模型能力与规格 盘古预测大模型能力与规格 盘古专业大模型能力与规格
start_time_begin 是 String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end 是 String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours 否 Long 起报时间间隔小时数,默认6。取值范围:[1
数据集格式要求 文本类数据集格式要求 图片类数据集格式要求 视频类数据集格式要求 气象类数据集格式要求 预测类数据集格式要求 其他类数据集格式要求 父主题: 使用数据工程构建数据集
如果学习率过小,模型的收敛速度将变得非常慢。 热身比例 热身比例是指在模型训练初期逐渐增加学习率的过程。 由于训练初期模型的权重通常是随机初始化的,预测能力较弱,若直接使用较大的学习率,可能导致更新过快,进而影响收敛。为解决这一问题,通常在训练初期使用较小的学习率,并逐步增加,直到达到预设
发布数据集 数据集发布场景介绍 发布文本类数据集 发布图片类数据集 发布视频类数据集 发布气象类数据集 发布预测类数据集 发布其他类数据集 管理发布后的数据集 父主题: 使用数据工程构建数据集
指标介绍请参见表2。 图1 查看训练指标 表2 训练指标说明 模型 训练指标 指标说明 NLP大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
数据获取:数据获取是数据工程的第一步,支持将不同来源和格式的数据导入平台。 支持的接入方式:通过OBS服务导入数据。 支持的数据类型:文本、图片、视频、气象、预测、其他。 自定义格式:用户可以根据业务需求上传自定义格式的数据,提升数据获取的灵活性和可扩展性。 通过这些功能,用户可以轻松将大量数据导入
格式示例如下: {"text":"盘古大模型,是华为推出的盘古系列AI大模型,包括NLP大模型、多模态大模型、CV大模型、科学计算大模型、预测大模型。"} 单个文件大小不超过50GB,文件数量最多1000个。。 单轮问答 jsonl、csv jsonl格式:数据由问答对构成,co
通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求 华为云盘古大模型推理SDK要求:
ROUGE-2 模型生成句子与实际句子在两个词的相似度,数值越高,表明模型性能越好。 ROUGE-L 模型生成句子与实际句子在最长公共子序列的相似度,数值越高,表明模型性能越好。 PRECISION 问答匹配的精确度,模型生成句子与实际句子相比的精确程度,数值越高,表明模型性能越好。
支持数据发布的数据集类型 数据类型 数据评估 数据配比 数据流通 文本类 √ √ √ 图片类 √ √ √ 视频类 √ - √ 气象类 - - √ 预测类 - - √ 其他类 - - √ ModelArts Studio大模型开发平台支持将文本类、图片类数据集发布为两种格式: 默认格式:适
迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域: 西南-贵阳一 开发盘古NLP大模型 开发盘古CV大模型 开发盘古预测大模型 开发盘古科学计算大模型 开发盘古专业大模型 应用开发工具链 应用开发工具链是盘古大模型平台的关键模块,支持提示词工程和智能Agent应用创建。
盘古大模型的潜力,为业务创新提供强大支持。 数据工程 使用数据工程构建数据集 模型开发 开发盘古NLP大模型 开发盘古CV大模型 开发盘古预测大模型 开发盘古科学计算大模型 开发盘古专业大模型 应用开发 开发盘古大模型提示词工程 开发盘古大模型Agent应用 07 SDK 通过盘
不同业务场景和模型应用对数据有不同的要求。数据加工能够根据特定业务需求进行定制化处理,确保数据满足应用场景的需求,从而提高数据和模型的匹配度,提升业务决策和模型预测的准确性。 提升数据处理效率 通过平台提供的自动化加工功能,用户可以高效完成大规模数据的预处理工作,减少人工干预,提升数据处理的一致性和效率,确保整个数据工程流程的顺畅运行。
b、cls1样本aa和cls2的样本cc。 每个样本文件夹(如 aa)可以视为一个视频片段,其中每张图片代表视频的一个帧,将这些帧作为一个序列来学习视频分类,有助于模型学习视频的时序特征,从而进行准确的分类。 物体检测数据集标注文件说明 该说明适用于表1中的物体检测标注文件格式。
query改写模块:盘古-NLP-N1-基础功能模型 说明:该模块用于对多轮对话中的省略和指代问题进行补全,对多轮对话中的query进行改写。当前query改写模块来实现训练和预测需要使用特殊的Prompt,需要注意保持一致。 中控模块:盘古-NLP-N1-基础功能模型 说明:该模块需要实现意图识别分类的功能。当输入
为AND关系","value":"值内容","relation_operator":"字段与值的逻辑关系,枚举值","orders":"排序列表","order":"升序还是降序,枚举值:DESC, ASC","limit":"返回数量"] 参数字段解释示例: [['id', 'int'
通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性 同一问题使用大模型回答多次,生成多个推理路径及答案,选择一致性最高的结果作为最终答案。 父主题:
执行深度定制大模型生成的参数取值改写(后处理)失败时触发该错误码。 可检查后处理护栏代码。 101050 执行默认护栏(时间参数解析)失败时触发该错误码。 可检查支持处理的时间类型是否超出支持范围。 102053 提示词模板有误时触发该错误码。 检查提示词模板是否格式有误。 103004