检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts Studio大模型开发平台,支持的数据类型包括文本、图片、视频、气象、预测数据以及用户自定义的其他类型数据。平台提供灵活的数据接入方式,确保不同业务场景下的数据获取需求得到满足。 数据加工:平台提供强大的数据加工
繁华的城市,人们穿着古代的服饰,用着他听不懂的语言交谈。他意识到自己真的穿越了。李晓在宋朝的生活充满了挑战。他必须学习如何使用新的语言,适应新的生活方式。他开始学习宋朝的礼仪,尝试理解这个时代的文化。在宋朝,李晓遇到了许多有趣的人。他遇到了一位名叫赵敏拿来的小女孩,她聪明伶俐,让
概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 6 学习率(learning_rate) 7.5e-05 学习率衰减比率(learning_rate_decay_ratio) 0.067 热身比例(warmup) 0.013
使用“能力调测”调用科学计算大模型 使用该功能调用部署后的预置服务对区域海洋要素等场景进行预测。 使用“能力调测”调用科学计算大模型 使用API调用科学计算大模型 可调用科学计算API接口对区域海洋要素等场景进行预测。 使用API调用科学计算大模型 数据工程使用流程 ModelArts Stu
问答模型的微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 4 训练轮数(epoch) 3 学习率(learning_rate) 3e-6 学习率衰减比率(learning_rate_decay_ratio) 0.01 热身比例(warmup) 0.1 评估和优化模型
增强模型的准确性与鲁棒性:准确的标注数据能够帮助模型更好地学习数据的潜在模式和规律,进而提高模型的性能、准确性和鲁棒性。 节省时间与成本:AI预标注可以显著减少人工干预,提高标注的效率和一致性,帮助用户节省标注成本和时间,尤其是在大规模数据集的处理过程中。 总的来说,数据标注是数
进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 父主题: 大模型微调训练类问题
进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中
大模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码
训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。
训练和推理过程中,通过数据脱敏、隐私计算等技术手段识别并保护敏感数据,有效防止隐私泄露,保障个人隐私数据安全。 内容安全:通过预训练和强化学习价值观提示(prompt),构建正向的意识形态。通过内容审核模块过滤违法及违背社会道德的有害信息。 模型安全:通过模型动态混淆技术,使模型
模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 图1 部署详情 父主题: 部署科学计算大模型
场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在提示词中引导模型学习如何简洁明了地作答。 如果场景涉及较为复杂、专业的业务逻辑(例如金融分析、医疗诊断等),则需要更为精确的处理方式: 如果该场景的业务规则较
模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模型的部署详情、部署事件、部署日志等信息。 图1 部署详情 父主题: 部署NLP大模型
Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调用失败的次数、调用的总Tokens数、以及输入输出的Tokens数等基本信息。 此外,该功能还提供了可视化界
单击“下一步”。在“已选择数据集配比”中,用户可以设置从数据集中抽取指定数量的数据用于训练。进行数据配比的目的是为了确保模型能够更全面地学习和理解数据的多样性,提升模型的泛化能力和性能。 图4 发布方式2 图5 数据集配比 设置发布格式。由于数据工程需要支持对接盘古大模型或三方
单击“下一步”。在“已选择数据集配比”中,用户可以设置从数据集中抽取指定数量的数据用于训练。进行数据配比的目的是为了确保模型能够更全面地学习和理解数据的多样性,提升模型的泛化能力和性能。 图4 发布方式2 图5 数据集配比 设置发布格式。由于数据工程需要支持对接盘古大模型或三方
表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate) 7.5e-05 学习率衰减比率(learning_rate_decay_ratio) 0.067 热身比例(warmup) 0.01
start_time_begin String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours Long 起报时间间隔小时数,默认6。 forecast_lead_hours