检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
e 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 resource_id 是 String 资源id,如在线服务的服务ID。 请求参数 表2 请求Header参数 参数 是否必选 参数类型
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin
fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP流水线并行(pipelin