检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
平台资源管理 管理模型资产、推理资产 获取Token消耗规则
Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。
常见训练报错与解决方案 read example failed报错 报错原因:模型训练过程中,训练日志出现“read example failed”报错,表示当前数据集格式不满足训练要求。 解决方案:请参考数据格式要求校验数据集格式。 图1 read example failed报错
区域间的资源(计算资源、存储资源和网络资源),以默认项目为单位进行授权,用户可以访问您账号中该区域的所有资源。如果您希望进行更加精细的权限控制,可以在区域默认的项目中创建子项目,并在子项目中购买资源,然后以子项目为单位进行授权,使得用户仅能访问特定子项目中资源,使得资源的权限控制更加精确。
SDK) Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,这样当需要访问这些数据时,就不用再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 对LLM使用缓存: LLM llm = LLMs.of(LLMs.PANGU, llmConfig);
SDK) Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,当需要访问这些数据时,无需再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 Cache缓存有以下几种操作: 初始化:指定缓存使用哪种存储方式,例如,使用内存型缓存可以设置为memory_cache
推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。 父主题: 典型训练问题和优化策略
为什么微调后的模型,评估结果很好,但实际场景表现却很差 多轮问答场景,为什么微调后的效果不好 数据量满足要求,为什么微调后的效果不好 数据量和质量均满足要求,为什么微调后的效果不好 数据量和质量均满足要求,Loss也正常收敛,为什么微调后的效果不好
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能提供准确的响应。这种对话问答方式提高了知识获取效率,使智能客服系统更加人性化和有温度。 此外,盘古大模型还能够根据用户的行为和反馈不断学习和优化,进一步提升服务能力。它能识别用户的情绪和语气,调整回答的语调
边缘部署是指将模型部署到用户的边缘设备上。这些设备通常是用户自行采购的服务器,通过ModelArts服务纳管为边缘资源池。然后利用盘古大模型服务将算法部署到这些边缘资源池中。 图1 边缘资源池创建步骤 当前仅支持预置模型(盘古-NLP-N2-基础功能模型)和基于N2的模型(盘古-N
M用户(子用户),并授权控制他们对华为云资源的访问范围。例如,对于负责软件开发的人员,您希望他们拥有接口的调用权限,但不希望他们拥有训练模型或访问训练数据的权限,那么您可以先创建一个IAM用户,并设置该用户在盘古平台中的角色,控制他们对资源的使用范围。 IAM权限 默认情况下,管
APIG”开头的错误码,请参考本文档进行处理。 表1 错误码 错误码 错误信息 说明 建议解决方法 PANGU.0001 unknown error. 未知错误。 请联系服务技术支持协助解决。 PANGU.0010 parameter illegal. 请求参数错误。 请参考《A
根据授权项策略,系统会自动推荐授权范围方案。例如,可以选择“所有资源”,即用户组内的IAM用户可以基于设置的授权项限使用账号中所有的企业项目、区域项目、全局服务资源。也可以选择“指定区域项目资源”,如指定“西南-贵阳一”区域,即用户组内的IAM用户仅可使用该区域项目中的资源。 图4 设置最小授权范围 完成用户组授权。
数据量和质量均满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习
学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置得过小,导致模型的收敛速度太慢,无法达到最优解。您可以尝试增大训练轮数或者增大学习率的方式来解决。 图4 异常的Loss曲线:平缓且保持高位
对召回工具的准确性要求更高。 多轮改写模型:对用户的问题进行多次改写,以增加召回内容的多样性。 检索工具数量:指在处理用户问题时,会检索出相关性最高的前N个工具。 历史信息处理策略 设置处理和利用用户历史对话信息的策略。 类型:对用户历史对话信息进行截断(truncation),用于控制传递给模型的上下文长度。
是基于某个领域内的知识问答,那么采用微调的手段确实能从一定程度上提升效果,但如果综合考虑训练的耗时和模型后续的持续迭代,采用搜索+问答的方案则更具性价比。 父主题: 典型训练问题和优化策略
回答的风格或格式有特殊要求:虽然通用模型学习了相当可观的基础知识,但如果目标任务要求回答必须符合特定的风格或格式,这将造成和基础知识的数据分布差异。例如,需要模型使用某银行客服的口吻进行线上问答,此时需要使用符合该银行风格和格式的数据集进行微调,以提升模型的遵循度。 Prompt工程后,效果仍无法达到预期:当对模
以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性