检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据量和质量均满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习
IAM权限 默认情况下,管理员创建的IAM用户(子用户)没有任何权限,需要将其加入用户组,并对用户组授权,才能使得用户组中的用户获得对应的权限。授权后,用户就可以基于被授予的权限对云服务进行操作。 服务使用OBS存储训练数据和评估数据,如果需要对OBS的访问权限进行细粒度的控制。可以在盘古服务的委托中增加Pangu
进入盘古大模型套件平台,进入“模型开发 > 模型部署 > 边缘部署”,单击右上角“部署”按钮。 在创建部署页面选择模型与部署资产,选择部署方式为边缘部署,输入推理实例数(根据边缘资源池的实际资源选择),输入服务名称,单击“立即创建”。 创建成功后,可在“模型部署 > 边缘部署”,查看边缘部署列表。 单击“服务名称”可进入服务详情界面。
待评估模型:支持选择多个模型版本同时评估,最多选择5个。待评估模型必须符合前提条件。 评估资源:依据选择的模型数据自动给出所需的评估资源。 打分模式:当前版本打分模式仅支持基于规则,用户不可选,且暂无人工打分。基于规则打分:使用预置的相似度或准确率打分规则对比模型生成结果与真实标注的差异,从而计算模型指标。
学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置得过小,导致模型的收敛速度太慢,无法达到最优解。您可以尝试增大训练轮数或者增大学习率的方式来解决。 图4 异常的Loss曲线:平缓且保持高位
对召回工具的准确性要求更高。 多轮改写模型:对用户的问题进行多次改写,以增加召回内容的多样性。 检索工具数量:指在处理用户问题时,会检索出相关性最高的前N个工具。 历史信息处理策略 设置处理和利用用户历史对话信息的策略。 类型:对用户历史对话信息进行截断(truncation),用于控制传递给模型的上下文长度。
是基于某个领域内的知识问答,那么采用微调的手段确实能从一定程度上提升效果,但如果综合考虑训练的耗时和模型后续的持续迭代,采用搜索+问答的方案则更具性价比。 父主题: 典型训练问题和优化策略
以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性
回答的风格或格式有特殊要求:虽然通用模型学习了相当可观的基础知识,但如果目标任务要求回答必须符合特定的风格或格式,这将造成和基础知识的数据分布差异。例如,需要模型使用某银行客服的口吻进行线上问答,此时需要使用符合该银行风格和格式的数据集进行微调,以提升模型的遵循度。 Prompt工程后,效果仍无法达到预期:当对模
的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。 父主题: 典型训练问题和优化策略
欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人
PI接口进行编排,串联query改写、意图识别模块、检索模块和问答模块。该pipeline负责接收前端用户输入的query和历史问答,逐步处理并最终输出答案,展示在前端界面。 在该框架中,query改写模块、中控模块和问答模块由大模型具体实现,因此涉及到大模型的训练、优化、部署与
大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 知识库管理”,单击页面右上角“创建知识库”。
实例化Tool(Java SDK) Tool分为StaticTool(静态工具)和DynamicTool(动态工具)两类。静态工具需要开发者事先定义好,即在编译期定义与实例化。对于动态工具,开发者可以在系统运行时动态构建,即在运行态定义与实例化。 StaticTool(静态工具)
情况可能是由于以下几个原因导致的,建议您依次排查: 数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第
题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考: 表1 推理参数的建议和说明 推理参数 范围 建议值 说明 温度(temperature) 0~1 0.3 温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。
限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 典型训练问题和优化策略
盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 华为云盘古大模型,以下功能支持API调用。 表1 API清单 API 功能 NLP-文本补全 给定一个提示和一些参数,模型会根
查看评估任务详情 查看评估任务详情 登录盘古大模型套件平台。 在左侧导航栏中选择“模型开发 > 模型评估”。 单击任务名称查看模型评估任务详情。包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。
用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。