检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了
时,文本内容无法正确读取,可能报错找不到路径。 原因分析 Notebook是Linux环境,和Windows环境下的换行格式不同,Windows下是CRLF,而Linux下是LF。 解决方法 可以在Notebook中转换文件格式为Linux格式。 shell语言: dos2unix
ModelArts服务软件开发工具包(ModelArts SDK)是对ModelArts服务提供的REST API进行的Python封装,以简化用户的开发工作。用户直接调用ModelArts SDK即可轻松管理数据集、启动AI训练以及生成模型并将其部署为在线服务。 ModelArts SDK目
assignment。 原因分析 增量训练作业设置的epochs参数有误,该问题是由YOLOv5的增量训练机制引起: 如果第二次增量训练的epochs数值和第一次常规训练的epochs数值设置一样,则会报错。 如果第二次增量训练的epochs数值小于第一次常规训练的epochs数值,则增量训练会出现少训练一个epoch的现象。
additional information. 原因分析 该问题为用户使用VS Code 1.86版本软件导致的,需要用户使用较低版本的VS Code 。 解决方案 使用VS Code 1.85版本软件。下载链接:https://code.visualstudio.com/updates/v1_85。
其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了
stage0的8号卡和pp stage3的60号卡。查看对8号卡的降频分析(图7)可以发现节点降频主要影响了FlashAttention和MatMul两类算子,导致这两类算子的计算性能劣化,从而影响了整体的训练性能。按照html中给出的建议,需要检查8号卡和60号卡对应节点的温度和最大功率。
其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了
控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts Workflow提供标准化MLOps解决方案,降低模型训练成本 支持数据标注、数据处理、模型开
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.909)
前提条件 已完成模型开发和训练,使用的AI引擎为ModelArts支持的类型和版本,详细请参见推理支持的AI引擎。 已完成训练的模型包,及其对应的推理代码和配置文件,且已上传至OBS目录中。 确保您使用的OBS与ModelArts在同一区域。 创建模型操作步骤 登录ModelArts管
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.910)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.908)
Lite Cluster Cluster资源池如何进行NCCl Test?
placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格") ) ), # 训练资源规格信息 depend_steps=[condition_step] ) # 通过JobStep来
deploying:部署中,服务正在部署,调度资源部署等。 concerning:告警,后端实例异常,可能正在计费。例如多实例的情况下,有的实例正常,有的实例异常。正常的实例会产生费用,此时服务状态是concerning。 failed:失败,服务部署失败,失败原因可以查看事件和日志标签。 stopped:停止。