数据属性:筛选数据的来源,选择“全部”或“推理”。 图1 筛选条件 查看已标注图片 在标注任务详情页,单击“已标注”页签,您可以查看已完成标注的图片列表。图片缩略图下方默认呈现其对应的标签,您也可以勾选图片,在右侧的“选中文件标签”中了解当前图片的标签信息。 查看已标注文本 在数据集详情页,单击“已标
check_running_task 否 Boolean 是否检测数据集中正在运行(包括初始化)的任务。可选值如下: true:检测数据集中正在运行(包括初始化)的任务 false:不检测数据集中正在运行的任务(默认值) running_task_type 否 Integer 指定需要检测的正在运行任务(包括初始化)的类型。可选值如下:
入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参
详细请参见: 标注图片(图像分类) 标注图片(物体检测) 标注文本(文本分类) 标注文本(命名实体) 标注文本(文本三元组) 标注音频(语音分割) 在标注页面中,每个成员可查看“未标注”、“待确认”、“已驳回”、“待审核”、“审核通过”、“验收通过”的图片信息。请及时关注管理员驳回以及待修正的图片。
死。 检测规则 卡死检测主要是通过监控作业进程的状态和资源利用率来判定作业是否卡死。会启动一个进程来周期性地监控上述两个指标的变化情况。 进程状态:只要训练作业中存在进程IO有变化,进入下一个检测周期。如果在多个检测周期内,作业所有进程IO都没有变化,则进入资源利用率检测阶段。
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
描述 add_sample_count Integer 处理后新增的图片数量。 create_time Long 数据处理任务的创建时间。 deleted_sample_count Integer 处理后删除的图片数量。 description String 数据处理任务的版本描述。
表示图像的像素信息。 width:必选字段,图片的宽度。 height:必选字段,图片的高度。 depth:必选字段,图片的通道数。 segmented 是 表示是否用于分割。 mask_source 否 表示图像分割保存的mask路径。 object 是 表示物体检测信息,多个物体标注会有多个object体。
导入的OBS路径或Manifest路径。 导入Manifest时,path必须精确到具体Manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、图像分割、文本分类、声音分类和表格数据集。 字符限制:不允许出现的特殊字符有换行符(\n)、回车符(\r)、制表符(\t)。 annotation_config
Integer 模型ID。 model_name String 模型名称。 model_usage Integer 模型用途。 1代表图像分类 2代表检测物体的类别和位置 3代表图像语义分割 4代表自然语言处理 5图嵌入 model_precision String 模型精度描述。 model_size
成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
描述 add_sample_count Integer 处理后新增的图片数量。 create_time Long 数据处理任务的创建时间。 deleted_sample_count Integer 处理后删除的图片数量。 description String 数据处理任务的版本描述。
的数据集可直接在ModelArts控制台数据集列表中显示。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
据集的最大样本数量限制:1000000,最大标签数量限制:10000。 除图片类型之外的数据集(如视频、文本、音频等),单个样本大小限制:5GB。 针对图片类数据集(物体检测、图像分类、图像分割),单个图片大小限制:25MB。 单个manifest文件大小限制:5GB。 文本文件单行大小限制:100KB。
Qwen-VL基于Lite Server适配PyTorch NPU的推理指导(6.3.909) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu
String 文件名称。 source Object 数据源信息,详细请见表3。 width Long 图片长度。 height Long 图片高度。 depth Long 图片深度。 segmented String 分割。 mask_source String 图像分割得到的m
在ModelArts中物体检测标注时能否自定义标签? 可以通过修改数据集给标签添加自定义属性来设置一些自定义的属性。 图1 修改数据集 父主题: Standard数据准备
在线服务部署完成后,单击“预测”页签。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 本案例中使用的订阅模型可以识别81类常见超市商品,模型对预测图片有一定范围和要求,不满足条件的图片会影响预测结果的准确性。 图4 预测样例图 图5 预测结果
能包含!<>=&"'特殊字符。 export_images 否 Boolean 发布时是否导出图片到版本输出目录。可选值如下: true:导出图片到版本输出目录 false:不导出图片到版本输出目录(默认值) remove_sample_usage 否 Boolean 发布时是否
--benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。
您即将访问非华为云网站,请注意账号财产安全