在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段
在ModelArts数据集中添加图片对图片大小有限制吗? 在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。
在ModelArts中如何将图片划分到验证集或者训练集? 目前只能指定切分比例,随机将样本划分到训练集或者验证集,不支持指定。 切分比例的指定: 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。
标注图片(图像分类) 在标注作业详情页中,展示了此数据集中“全部”、“未标注”和“已标注”的图片,默认显示“未标注”的图片列表。单击图片,即可进行图片的预览,对于已标注图片,预览页面下方会显示该图片的标签信息。 在“未标注”页签,勾选需进行标注的图片。 手工点选:在图片列表中,
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
如何删除ModelArts数据集中的图片? 登录ModelArts管理控制台,左侧菜单栏选择“数据管理>数据标注”,进入数据标注列表,单击需要删除图片的数据集,进入标注详情页。 在“全部”、“未标注”或“已标注”页面中,依次选中需要删除的图片,或者“选择当前页”选中该页面所有图片,然后单击删除。在
为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。 图2 物体检测 父主题:
在ModelArts中同一个账户,图片展示角度不同是为什么? 有的图片存在旋转角度等属性,不同的浏览器的处理策略不同,对浏览器的兼容性如表1和表2所示。 L代表last,L3-产品版本上线时最新的3个稳定浏览器版本。 如果您当前使用的浏览器版本过低,将在一定程度上影响页面的显示效果,系统会提示您尽快对浏览器进行升级。
“确定”,完成选中图片的标注操作。例如,您可以选择多张图片,按照花朵种类将图片标注为“tulips”。同样选择其他未标注分类图片,将其标注为“sunflowers”、“roses”等。标注完成后,图片将存储至“已标注”页签下。 图片标注不支持多标签,即一张图片不可以添加多个标签。
训练物体检测模型 自动学习物体检测项目,在图片标注完成后,通过模型训练得到合适的模型版本。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览页面,单击“数据标注”节点的“实例详情”进入数据标注页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的
-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下,图片的目录结构如:“/bucketName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 物体检测数据集要求用户将标注对象和标注文件存储
动学习物体检测项目后数据标注节点会报错。 图2 数据标注节点报错 步骤三:创建自动学习物体检测项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“自动学习”默认进入新版自动学习页面,选择物体检测项目,单击“创建项目”。 进入“创建物体检测”页面后,填写相关参数。
横坐标:边缘化程度,即目标框中心点距离图片中心点的距离占图片总距离的比值,值越大表示物体越靠近边缘。(图片总距离表示以图片中心点为起点画一条经过标注框中心点的射线,该射线与图片边界交点到图片中心点的距离)。 纵坐标:框数量(统计所有图片中的框)。 一般呈正态分布。用于判断物体是否处于图片边缘,有一些只露
查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或
创建处理任务,支持创建“特征分析”任务和“数据处理”两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或
图1 物体检测的难例确认 针对“图像分类”标注作业 在“待确认”页签中,查看标注难例的图片,其添加的标签是否准确。勾选标注不准确的图片,删除错误标签,然后在右侧“标签名”处添加准确标签。单击“确认”,勾选的图片及其标注情况,将呈现在“已标注”页签下。 选中的图片为标注错误图片,在右侧
针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。 预测分析:由于预测分析任务的数据集不在数据管
detection_classes 每个检测框的标签。 detection_boxes 每个检测框的四点坐标(y_min,x_min,y_max,x_max),如图2所示。 detection_scores 每个检测框的置信度。 图2 检测框的四点坐标示意图 由于“运行中”的在线
自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。 例如,用户通过搜索引擎搜索XX,将相关图片下载并上传到数据集,然后再使用自动分组,可以将XX图片分类,比如论文、宣传海报、确认为XX的图片、其他。用户可以根据分组结果,快速剔除
样本目录的图片个数作为数据样本的种类数。 simlarity_threshold 否 0.9 相似度阈值。两张图片相似程度超过阈值时,判定为相似图片,反之按非相似图片处理。输入取值范围为0~1。 embedding_distance 否 0.2 样本特征间距。两张图片样本特征间距
您即将访问非华为云网站,请注意账号财产安全