检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
云容器引擎-成长地图 | 华为云 盘古大模型 盘古大模型服务(PanguLargeModels)致力于深耕行业,打造多领域行业大模型和能力集。盘古大模型能力通过ModelArts Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。
平台支持发布的数据集格式为默认格式、盘古格式,可按需进行数据集格式转换。 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要进行数据集格式转换。当前仅文本类、图片类数据集支持转换为盘古格式。 NLP大模型开发流程 ModelArts Studio大模型开发平台提供了NLP大模型的全流程开发支持,涵盖
景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数据需要尽可能覆盖产品所提供的功能;数据需要覆盖难易度、长短度,包含参数丰富等场景;数据在长短、扁平与深层嵌套、对接客户api接口数量上全覆盖。 数据中需要提供JSON的
问题二:模型生成的文案中重复讨论一个相同的话题。 解决方案:对于这种情况,可以尝试修改推理参数。例如,降低“话题重复度控制”参数的值。若调整推理参数不生效,则检查数据质量,确认数据中不存在重复数据和高度相似数据。 父主题: 从基模型训练出行业大模型
评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 使用数据工程准备与处理数据集 检测数据集质量 清洗数据集 发布数据集 模型开发工具链
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考: 表1 推理参数的建议和说明 推理参数 范围 建议值 说明
部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。
创建视频类数据集评估标准 ModelArts Studio大模型开发平台针对视频数据集预设了一套评估标准,涵盖了视频的清晰度、帧率、完整性、标签准确性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建视频类数据集评估任务。
果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。
控制生成文本多样性和质量。调高核采样可以使输出结果更加多样化。 最大口令限制 用于控制聊天回复的长度和质量。 话题重复度控制 用于控制生成文本中的重复程度。调高参数模型会更频繁地切换话题,从而避免生成重复内容。 词汇重复度控制 用于调整模型对频繁出现的词汇的处理方式。调高参数会使模型减少相同词汇的重复使用,促使模型使用更多样化的词汇进行表达。
个较小的值。 困惑度 用来衡量大语言模型预测一个语言样本的能力,数值越低,准确率也就越高,表明模型性能越好。 指标看板 bleu-1:模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 bleu-2:模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。
对视频的基础质量(清晰度、亮度、模糊、画面抖动重影、低光过曝、花屏等)进行评分。分值范围(0, 1),数值越高质量越好,评分>0.05可认为是视频基础质量较高的视频。 美学评分 从内容(吸引人,清晰度)、构图(目标物位置良好)、颜色(有活力,令人愉悦)、光线(光线明显有对比度)、轨迹(连续
和古老的种类而闻名。中华鲟是一种濒危物种,主要原因是过度捕捞和生境破坏。2. **长江白鲟**:长江白鲟是长江特有的大型淡水鱼类,与中华鲟相似,也是一种濒危物种。长江白鲟 orangutanpuls.org的消失标志着长江生态系统出现了严重的问题。3. **草鱼**:草鱼是长江流
设置值 最大Token限制(max_token) 4096 温度(temperature) 0.9 核采样(top_p) 0.4 话题重复度控制(presence_penalty) 0.3 部署推理服务后,可以采用人工评测的方案来评估模型效果。以下列出该场景中可能遇到的常见问题,
模型训练:使用处理后的数据集训练模型。 超参数调优:选择合适的学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。 开发阶段的关键是平衡模型的复杂度和计算资源,避免过拟合,同时保证模型能够在实际应用中提供准确的预测结果。 应用与部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面:
外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的指令或问题等信息,也可以包含其他种类的信息,如上下文、输入或示例等。您可以通过这些元素来更好地指导模型
构造请求 本节介绍REST API请求的组成,并以调用服务的获取用户Token接口说明如何调用API。 您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987 。 请求示例如下图所示,一个请求主要由请
本样例场景实现NLP大模型的训练操作。 步骤7:压缩NLP大模型 本样例场景实现NLP大模型的压缩操作。压缩是指通过减少模型的参数量或计算复杂度,在尽量保持模型性能的前提下,减小其存储需求和推理时间,从而提升模型的部署效率,尤其在资源受限的环境中具有重要意义。常见的压缩方法包括剪枝、量化、知识蒸馏等。
查看提示词评估结果 评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。