检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
pore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benchmark工具用于精度验证,主要工作原理是:固定模型的输入,通过bench
定具体的shape信息,并且在模型转换的编译阶段完成对应shape的编译任务,从而能够在推理时支持多种shape的输入。 绝大多数情况下,昇腾芯片推理性能相比于CPU会好很多,但是也可能会遇到和CPU推理性能并无太大差别甚至出现劣化的情况。造成这种情况的原因可能有如下几种: 模型
在训练作业列表中,单击目标训练作业名称,查看该作业的详情。 在左侧获取“输出位置”下的路径,即为训练模型的下载路径。 模型迁移到其他账号 您可以通过如下两种方式将训练的模型迁移到其他账号。 将训练好的模型下载至本地后,上传至目标账号对应区域的OBS桶中。 通过对模型存储的目标文件夹或者目标桶配置策略,
模型精度调优 场景介绍 精度问题诊断 精度问题处理 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
即自定义镜像)方式创建训练作业。 新版训练支持使用“自定义算法”、“我的算法”、“我的订阅”方式来创建训练作业。 新版训练的创建方式有了更明确的类别划分,选择方式和旧版训练存在区别。 旧版中使用“算法管理”中已保存的算法创建训练作业的用户,可以在新版训练中使用“我的算法”创建训练作业。
pipeline应用准备 当前迁移路径是从ONNX模型转换到MindIR模型,再用MindSpore Lite做推理, 所以迁移前需要用户先准备好自己的ONNX pipeline。下文以官方开源的图生图的Stable Diffusion v1.5的onnx pipeline代码为例进行说明。
逐个替换模型,检测有问题的模型 该方式主要是通过模型替换,先定位出具体哪个模型引入的误差,进一步诊断具体的模型中哪个算子或者操作导致效果问题,模型替换原理如下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。 图1 精度诊断流程
OBS其他问题。 请参考OBS服务端错误码或者采集request id后向OBS客服进行咨询。 如果是空间不足。 参考 常见的磁盘空间不足的问题和解决办法章节处理。 父主题: 云上迁移适配故障
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在问题时,
enabled” 原因分析 出现该问题的可能原因如下: 新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。 重装torch等,需要注意选择与上一步版本相匹配的版本。
场景介绍 本小节通过一个具体问题案例,介绍模型精度调优的过程。 如下图所示,使用MindSpore Lite生成的图像和onnx模型的输出结果有明显的差异,因此需要对MindSpore Lite pipeline进行精度诊断。 图1 结果对比 在MindSpore Lite 2.0
模型转换报错如何查看日志和定位? 通过如下的配置项打开对应的模型转换日志,可以看到更底层的报错。如配置以下的环境变量之后,再重新转换模型,导出对应的日志和dump图进行分析: 报错日志中搜到“not support onnx data type”,表示MindSpore暂不支持该算子。
platform”报错,具体解决方法请参见2。 处理方法 安装第三方包 pip中存在的包,使用如下代码: import os os.system('pip install xxx') pip源中不存在的包,此处以“apex”为例,请您用如下方式将安装包上传到OBS桶中。 该样例已将安装包上传至“obs:
将Notebook的Conda环境迁移到SFS磁盘 本文介绍了如何将Notebook的Conda环境迁移到SFS磁盘上。这样重启Notebook实例后,Conda环境不会丢失。 步骤如下: 创建新的虚拟环境并保存到SFS目录 克隆原有的虚拟环境到SFS盘 重新启动镜像激活SFS盘中的虚拟环境
--loopCount=100 图1 调优前模型 图2 调优后模型 AOE优化成功的mindir已经融合了优化的知识库,是一个独立可用的模型。即使AOE知识库删除,不影响该mindir的性能。可以备份这个模型优化产生的知识库,以后需要的话再使用。 父主题: 性能调优
xxx”的报错,可以判断是环境中没有包含用户依赖的python包。 处理方法 训练作业导入模块时日志出现前两条报错信息,处理方法如下: 首先保证被导入的module中有“__init__.py”存在,创建“module_dir”的“__init__.py”,如原因分析中的结构所示。
s/text_encoder.mindir --device=Ascend 上述命令中:modelFile指定生成的mindir模型文件;device指定运行推理的设备。其他用法参考benchmark文档。 测试结果如下所示: 图1 测试结果 父主题: 性能调优
Notebook实例常见错误 创建Notebook实例后无法打开页面,如何处理? 使用pip install时出现“没有空间”的错误 使用pip install提示Read timed out 出现“save error”错误,可以运行代码,但是无法保存 单击Notebook的打开按钮时报“请求超时”错误?
获取内容失败 原因分析 在创建训练作业时指定的代码目录不存在导致训练失败。 处理方法 请您根据报错原因排查创建训练作业时指定的代码目录,即OBS桶的路径是否正确。有两种方法判断是否存在。 使用当前账户登录OBS管理控制台,去查找对应的OBS桶、文件夹、文件是否存在。 通过接口判断