检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常见问题 MindSpore Lite问题定位指南 模型转换报错如何查看日志和定位? 日志提示Compile graph failed 日志提示Custom op has no reg_op_name attr 父主题: GPU推理业务迁移至昇腾的通用指导
WebUI一般可以分为前端和后端实现两部分,后端的实现模式种类多样,并且依赖了多个的第三方库,当前在WebUI适配时,并没有特别好的方式。在对后端实现比较理解的情况下,建议针对具体的功能进行Diffusers模块的适配与替换,然后针对替换上去的Diffusers,对其pipeline进行昇腾迁移适配,进而替代原
迁移评估 推理迁移包括模型迁移、业务迁移、精度性能调优等环节,是否能满足最终的迁移效果需要进行系统的评估。如果您仅需要了解迁移过程,可以先按照本文档的指导进行操作并熟悉迁移流程。如果您有实际的项目需要迁移,建议填写下方的推理业务迁移评估表,并将该调研表提供给华为云技术支持人员进行迁移评估,以确保迁移项目能顺利实施。
应用迁移 模型适配 pipeline代码适配 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
训练网络迁移总结 确保算法在GPU训练时,持续稳定可收敛。避免在迁移过程中排查可能的算法问题,并且要有好的对比标杆。如果是NPU上全新开发的网络,请参考PyTorch迁移精度调优排查溢出和精度问题。 理解GPU和NPU的构造以及运行的差别,有助于在迁移过程中分析问题并发挥NPU的优势
用户分析定位后将自动迁移未能迁移的GPU相关的代码调用修改为NPU对应的接口,请参考昇腾手工迁移文档进行操作。 常见问题 如何检测当前的torch_npu是否正确安装? 您可以使用如下的python命令在对应的运行环境中初步校验torch_npu是否正常安装。 python3 -c
配置指南。 本文基于方式二的环境进行操作,请参考方式二中的环境开通和配置指导完成裸机和容器开发初始化配置。注意业务基础镜像选择Ascend+PyTorch镜像。 配置好的容器环境如下图所示: 图1 环境配置完成 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
Diffusion模型迁移到Ascend上进行推理:介绍如何将Stable Diffusion模型通过MSLite进行转换后,迁移在昇腾设备上运行。 图3 Stable Diffusion模型迁移到Ascend上进行推理 父主题: GPU推理业务迁移至昇腾的通用指导
迁移效果校验 在pipeline适配完成后,需要验证适配后的效果是否满足要求,通过对比原始onnx pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite
业务中是否有大量使用CPU的代码,以及日常运行过程中CPU的占用率(占用多少个核心),以及使用CPU计算的业务功能说明和并发机制。 - 是否有Linux内核驱动 是否有业务相关的Linux内核驱动代码。 - 依赖第三方组件列表 当前业务依赖的第三方软件列表(自行编译的第三方软件列表)。 例如:Faiss等。
供了即开即用的云上集成开发环境,包含迁移所需要的算力资源、AI框架、昇腾开发套件以及迁移调优工具链,最大程度减少客户自行配置环境的复杂度。 范围 本文涉及PyTorch训练的单卡和分布式业务迁移到昇腾的业务范围。当前针对常见的开源LLM/AIGC等领域的开源模型,ModelArt
PyTorch迁移精度调优 精度问题概述 精度调优总体思路 精度调优前准备工作 msprobe精度分析工具使用指导 父主题: GPU训练业务迁移至昇腾的通用指导
GPU训练业务迁移至昇腾的通用指导 训练业务迁移到昇腾设备场景介绍 训练迁移快速入门案例 PyTorch迁移精度调优 PyTorch迁移性能调优 训练网络迁移总结 父主题: GPU业务迁移至昇腾训练推理
PyTorch迁移性能调优 性能调优总体原则和思路 MA-Advisor性能调优建议工具使用指导 MindStudio-Insight性能可视化工具使用指导 父主题: GPU训练业务迁移至昇腾的通用指导
GPU推理业务迁移至昇腾的通用指导 简介 昇腾迁移快速入门案例 迁移评估 环境准备 模型适配 精度校验 性能调优 迁移过程使用工具概览 常见问题 推理业务迁移评估表 父主题: GPU业务迁移至昇腾训练推理
动态分档模型转换(可选) 如果迁移的模型有多个shape档位的需求,可以通过如下方式对模型进行分档转换。 动态分档是指将模型输入的某一维或者某几维设置为“动态”可变,但是需要提前设置可变维度的“档位”范围。即转换得到的模型能够在指定的动态轴上使用预设的几种shape(保证模型支持的shape),
orch自动迁移。 在PyTorch模型迁移后进行训练的过程中,CPU只负责算子的下发,而NPU负责算子的执行,算子下发和执行异步发生,性能瓶颈在此过程中体现。在PyTorch的动态图机制下,算子被CPU逐个下发到NPU上执行。一方面,理想情况下CPU侧算子下发会明显比NPU侧算
多数场景下的问题可以通过日志报错信息直接定位。如果日志的信息不能定位问题,您可以通过设置环境变量调整日志等级,打印更多调试日志。 关于如何对MindSpore Lite遇到的问题进行定位与解决,请参见MindSpore Lite官网提供的问题定位指南。 父主题: 常见问题
报错提示 原因分析 无。 处理方法 定义context时无需指定: context.ascend.provider = "ge" 父主题: 常见问题
图1 报错提示 原因分析 模型转换时未指定Ascend后端。 处理方法 需要在模型转换阶段指定“--device=Ascend”。 父主题: 常见问题