检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
调用启动智能任务接口给图像分类的数据集创建一个智能标注任务。 调用获取智能任务的信息接口根据智能标注的任务ID查询任务详情。 待智能标注任务完成后,调用查询智能标注的样本列表接口可以查看标注结果。 调用批量更新样本标签根据获取的智能标注样本列表确认智能标注结果。 前提条件 已获取IAM
ugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf
K认证的详细说明请参见API签名指南。 对于获取用户Token接口,由于不需要认证,所以只添加“Content-Type”即可,添加消息头后的请求如下所示。 POST https://iam.cn-north-1.myhuaweicloud.com/v3/auth/tokens Content-Type:
--enable-prefix-caching:服务端是否启用enable-prefix-caching特性,默认为false。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark
ugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf
ugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf
ugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf
ugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf
Standard支持的AI框架 ModelArts Standard的开发环境Notebook、训练作业、模型推理(即模型管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、P
2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存路径,如benchmark_parallel.csv。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark
2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图) 动态benchmark
Client、OBS Client。 OBS管理概述 ModelArts SDK支持对OBS的SDK接口进行调用,包括创建OBS桶,上传/下载文件和文件夹,删除OBS对象和桶。 ModelArts SDK具体操作管理请参见如下章节: 数据管理 训练管理 模型管理 服务管理 介绍使用ModelArts
权限策略和授权项 策略及授权项说明 数据管理权限 开发环境权限 训练作业权限 模型管理权限 服务管理权限 工作空间管理权限 DevServer权限
Standard部署模型并推理预测 推理部署使用场景 创建模型 创建模型规范参考 将模型部署为实时推理作业 将模型部署为批量推理服务 管理ModelArts模型 管理同步在线服务 管理批量推理作业
openai import OpenAI client = OpenAI( api_key="您的 APIKEY", # 从MaaS控制台鉴权管理处获取。 base_url="https://infer-modelarts.cn-east-4.myhuaweicloud.co
ModelArts基于不同的产品形态提供了多种访问方式。 管理控制台方式 ModelArts Standard支持通过管理控制台访问,包含自动学习、数据管理、开发环境、模型训练、模型管理、部署上线等功能,您可以在管理控制台端到端完成您的AI开发。 ModelArts MAAS可以通过管理控制台访问,包括大模型数据
w、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本 在ModelArts管理控制台,创建一个Notebook实例,镜像选择“TensorFlow-1.13”或“TensorFlow-1.15”。 打开Notebook,在JupyterLab中执行
ModelArts支持通过导入数据集的操作,导入更多数据。本地标注的数据,当前支持从OBS目录导入或从Manifest文件导入两种方式。导入之后您还可以在ModelArts数据管理模块中对数据进行重新标注或修改标注情况。 从OBS目录导入或从Manifest详细操作指导和规范说明请参见导入数据。 父主题: Standard数据准备
在模型详情页可以查看模型的详细介绍,根据这些信息选择合适的模型进行训练、推理,接入到企业解决方案中。 访问模型广场 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts Studio”进入ModelArts Studio大模型即服务平台。 在ModelArts
果accuracy_checking_details_{timestamp}.csv文件路径, -o需指定执行比对结果的存盘路径。执行完成后输出api_precision_compare_result_{timestamp}.csv和 api_precision_compare_details_{timestamp}