检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
PyTorch:pytorch_2.1.0 FrameworkPTAdapter:6.0.RC2 如果用到CCE,版本要求是CCE Turbo v1.25及以上 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-3rdLLM-6.3.905-20240611214128.zip
“服务部署”进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:
Query参数 参数 是否必选 参数类型 描述 delete_policy 否 Integer 是否删除标签及包含标签的样本。可选值如下: 0:只删除标签 1:删除标签及包含标签的样本 2:删除标签和包含标签的样本及其源文件 请求参数 表3 请求Body参数 参数 是否必选 参数类型
“服务部署”进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:
“服务部署”进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:
数据标注后,执行数据集发布操作后,在此指定路径下,按数据集版本,生成相关目录。包含ModelArts中使用的Manifest文件(包含数据及标注信息)。详细文件说明可参见数据集发布后,相关文件的目录结构说明。 查看步骤 在ModelArts管理控制台,进入“数据管理>数据集”。
s) 镜像系统版本:Ubuntu 18.04.4 LTS cuda:10.1.243 cudnn:7.6.5.32 Python解释器路径及版本:/home/ma-user/anaconda3/envs/TensorFlow-2.1/bin/python, python 3.7.10
都已开启IPv6,IPv6才会生效。若是打通VPC后,才开启ModelArts网络的IPv6或VPC网络的IPv6,此时需要重新打通VPC及子网,IPv6才会生效。 图2 创建网络 图3 启动IPv6 单用户最多可创建15个网络。 网段设置以后不能修改,避免与将要打通的VPC网段冲突。可能冲突的网段包括:
该环境为裸机开发环境,主要面向深度定制化开发场景。 优点:支持深度自定义环境安装,可以方便的替换驱动、固件和上层开发包,具有root权限,结合配置指导、初始化工具及容器镜像可以快速搭建昇腾开发环境。 缺点:资源申请周期长,购买成本高,管理视角下资源使用效率较低。 环境开通指导请参考DevServer资源
"region_id": "cn-north-1", ...... 当接口调用出错时,会返回错误码及错误信息说明,错误响应的Body体格式如下所示。 { "error_msg": "The format of message is error"
args.train_url) 新旧版训练预置引擎差异 新版的预置训练引擎默认安装Moxing2.0.0及以上版本。 新版的预置训练引擎统一使用了Python3.7及以上版本。 新版镜像修改了默认的HOME目录,由“/home/work”变为“/home/ma-user”,请
设置资产的公开权限。可选值有: “公开”:表示所有使用AI Gallery的用户都可以查看且使用该资产。 “指定用户”:表示仅特定用户可以查看及使用该资产。 “仅自己可见”:表示只有当前账号可以查看并使用该资产。 “时长限制”。 设置订阅者可以免费使用资产的时长,默认关闭,即无限期使
的操作列中单击“部署 > 在线服务”。 在部署页面,参考如下说明填写关键参数。 “资源池”:选择“公共资源池”。 “选择AI应用及版本”:AI应用来源及版本会自动选择前面创建的AI应用。 “计算节点规格”:在下拉框中选择限时免费的CPU资源,如果限时免费资源售罄,建议选择收费CPU资源进行部署。
Gallery为零基础开发者,提供无代码开发工具,快速推理、部署AI应用;为具备基础代码能力的开发者,AI Gallery将复杂的模型、数据及算法策略深度融合,构建了一个高效协同的模型体验环境,让开发者仅需几行代码即可调用任何模型,大幅度降低了模型开发门槛。 充足澎湃算力,最佳实践算力推荐方案,提升实践效率和成本
# 自定义数据集 更新代码目录下data/dataset_info.json文件。如使用以下示例数据集则命令如下。关于数据集文件格式及配置,更多样例格式信息请参考data/README_zh.md 的内容。 vim dataset_info.json 新加配置参数如下: "alpaca_gpt4_data":
# 自定义数据集 更新代码目录下data/dataset_info.json文件。如使用以下示例数据集则命令如下。关于数据集文件格式及配置,更多样例格式信息请参考data/README_zh.md 的内容。 vim dataset_info.json 新加配置参数如下: "alpaca_gpt4_data":
# 自定义数据集 更新代码目录下data/dataset_info.json文件。如使用以下示例数据集则命令如下。关于数据集文件格式及配置,更多样例格式信息请参考data/README_zh.md 的内容。 vim dataset_info.json 新加配置参数如下: "alpaca_gpt4_data":
Gallery仓库的存储空间。 在资产详情页,选择“设置”页签。 在“删除资产”处,单击“删除”按钮,确认后资产将被删除。 删除操作不可撤销,执行此操作后该资产及相关文件将被永久删除,请谨慎操作。 父主题: 发布和管理AI Gallery镜像
# 自定义数据集 更新代码目录下data/dataset_info.json文件。如使用以下示例数据集则命令如下。关于数据集文件格式及配置,更多信息请参考data/README_zh.md 的内容。 vim dataset_info.json 新加配置参数如下: "alpaca_gpt4_data":
used_npus:使用哪些NPU model_type:使用模型类型 目前支持 qwen2 llama1 llama2 及 llama3,其中llama1、2及chat都填写llama model_name:模型地址 data_path:预训练数据集地址 即一中生成的文件地址 s