检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
run.sh脚本测试ModelArts训练整体流程 自定义容器在ModelArts上训练和本地训练的区别如下图: 图1 本地与ModelArts上训练对比 ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下:
pt模型转onnx模型。以转换yolov8n.pt为例,执行如下命令,执行完会在当前目录生成yolov8n.onnx文件。 python pt2onnx.py --pt yolov8n.pt onnx模型转mindir格式,执行如下命令,转换完成后会生成yolov8n.mindir文件。 converter_lite
监控资源 用户可以通过资源占用情况窗口查看计算节点的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“g
Hub中打开了可用的案例,会自动跳转到CodeLab中,此时是可以使用这项功能的。 如果切换了Notebook的规格,那么只能在Notebook进行单机调测,不能进行分布式调测,也不能提交远程训练任务。 当前仅支持PyTorch和MindSpore AI框架,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。
吞吐量(tokens/s/p):可通过表1表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置小一些,比如16。在运行human_eval等生成式回答(生成式回答是对整体进行评测,少一个字符就可能会导致判断错误)时,max_out_len设置建议长一些,比如512,至少包含第一个回答的全部字段。
选择AI应用遵循的许可证。 计算规格选择 是 按需选择计算规格。单击“选择”,在弹窗中选择资源规格并设置运行时长控制,单击“确定”。 在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不可用的资源会置灰。右侧“配置信息”区域会显示计算规格的详细数据,AI G
吞吐量(tokens/s/p):可通过表1表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格为
在部署服务时,选择专属资源池,在选择“计算节点规格”时选择“自定义规格”,设置小一些或者选择小规格的服务节点规格,当资源池节点可以容纳多个服务节点规格时,就可以部署多个服务。如果使用此方式进行部署推理,选择的规格务必满足模型的要求,当设置的规格过小,无法满足模型的最小推理要求时,则会出现部署失败或预测失败的情况。
日志是否有明显的Error信息,如果有则表示训练失败,请根据日志提示定位原因并解决。 在训练详情页左下方单击训练输出路径,如图4所示,跳转到OBS目录,查看是否存在model文件夹,且model文件夹中是否有生成训练模型。如果未生成model文件夹或者训练模型,可能是训练输入数据
”如何解决? 问题现象 或 VS Code连接Notebook一直提示选择证书,且提示信息除标题外,都是乱码。选择证书后,如上图所示仍然没有反应且无法进行连接。 原因分析 当前环境未装OpenSSH或者OpenSSH未安装在默认路径下,详情请参考VS Code文档。 解决方法 如果当前环
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格
什么是边缘节点? 边缘节点是您自己的边缘计算设备,用于运行边缘应用,处理您的数据,并安全、便捷地和云端应用进行协同。 父主题: 边缘服务
ModelArts支持将AI应用按照业务需求部署为服务。训练类型不同,部署后的计费方式不同。 将AI应用部署为服务时,根据数据集大小评估模型的计算节点个数,根据实际编码情况选择计算模式。 具体计费方式请参见ModelArts产品价格详情。部署AI应用可选择按需计费,也可根据业务类型和需求购买套餐包。
STOPPED:已停止 SNAPSHOTTING:快照中(保存镜像时的状态) CREATE_FAILED:创建失败 START_FAILED:启动失败 DELETE_FAILED:删除失败 ERROR:错误 DELETED:已删除 FROZEN:冻结 token String Notebook鉴权使用的token信息。
ModelArts支持将AI应用按照业务需求部署为服务。训练类型不同,部署后的计费方式不同。 将AI应用部署为服务时,根据数据集大小评估模型的计算节点个数,根据实际编码情况选择计算模式。 具体计费方式请参见ModelArts产品价格详情。部署AI应用可选择按需计费,也可根据业务类型和需求购买套餐包。