检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自动模型优化介绍 ModelArts训练支持超参搜索功能,自动实现模型超参搜索,为您的模型匹配最合适的超参。 在模型训练过程中,有很多超参需要根据任务进行调整,比如learning_rate、weight_decay等,这一工作往往需要一个有经验的算法工程师花费一定精力和大量时间
双击“服务部署”节点,完成相关参数配置。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显
Shell界面提示如下。 图1 Cloud Shell界面 当作业处于非运行状态或权限不足时会导致无法使用Cloud Shell,请根据提示定位原因即可。 图2 报错提示 部分用户登录Cloud Shell界面时,可能会出现路径显示异常情况,此时在Cloud Shell中单击回车键即可恢复正常。
集群转发模式:iptables|ipvs huawei-npu npu-driver volcano 插件版本匹配关系请见表3。 RoCE 操作系统:Huawei Cloud EulerOS 2.0 64bit 内核版本:5.10.0-60.18.0.50.r865_35.hce2
luster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。 降低正则化约束。 正则化约束是为了防止模型过拟合,如果模型压根不存在过拟合而是欠拟合了,那么就考虑是否降低正则化参数λ或者直接去除正则化项。 父主题:
这种类似固定的卡ID号,与实际选择的卡ID不匹配。 处理方法 尽量代码里不要去修改CUDA_VISIBLE_DEVICES变量,用系统默认里面自带的。 如果必须指定卡ID,需要注意1/2/4规格下,指定的卡ID与实际分配的卡ID不匹配的情况。 如果上述方法还出现了错误,可以去no
Ascend相关问题 Cann软件与Ascend驱动版本不匹配 训练作业的日志出现detect failed(昇腾预检失败) 父主题: 训练作业
建并使用的工作空间,以实际取值为准。 search_type 否 String 过滤方式。可选值如下: equal表示精确匹配。 contain表示模糊匹配。 具体过滤的字段,由各个接口额外定义参数。例如Workflow支持按照名称(name)进行过滤,则相应的过滤字段为name
目录下存在dockerfile文件。 图2 构建日志:dockerfile文件目录有问题 pip软件包版本不匹配,需要修改为日志中打印的存在的版本。 图3 pip版本不匹配 构建日志中出现报错:“exec /usr/bin/sh: exec format error”。 这种报错
名称 搜索指标的名称。需要与您在代码中打印的搜索指标参数保持一致。 优化方向 可选“最大化”或者“最小化”。 指标正则 填入正则表达式。您可以单击智能生成功能自动获取正则表达式。 设置自动化搜索参数 从已设置的“超参”中选择可用于搜索优化的超参。优化的超参仅支持float类型,选中自动化搜索参数后,需设置取值范围。
print(model_list) 参数说明 表1 查询检索参数说明 参数 是否必选 参数类型 说明 model_name 否 String 模型名称,可支持模糊匹配。 model_version 否 String 模型版本。 model_status 否 String 模型状态,可根据模型的“publ
-V)查看该镜像的cuda版本(customize_service.py编写指导请见模型推理代码编写说明)。 确认该cuda版本与您安装的mmcv版本是否匹配。 部署时是否需要使用GPU,取决于的模型需要用到CPU还是GPU,以及推理脚本如何编写。 父主题: 服务部署
日志提示“Please upgrade numpy to >= xxx to use this pandas version” 重装的包与镜像装CUDA版本不匹配 创建训练作业提示错误码ModelArts.2763 训练作业日志中提示 “AttributeError: module '***' has
如何通过docker镜像启动容器? 如何在ModelArts的Notebook中配置Conda源? ModelArts的自定义镜像软件版本匹配有哪些注意事项? 镜像在SWR上显示只有13G,安装少量的包,然后镜像保存过程会提示超过35G大小保存失败,为什么? 如何保证自定义镜像能不因为超过35G而保存失败?
当前支持最大获取150个模型对象。 表1 查询检索参数说明 参数 是否必选 参数类型 说明 model_name 否 String 模型名称,可支持模糊匹配。 model_version 否 String 模型版本。 model_status 否 String 模型状态,可根据模型的“publ
Query参数 参数 是否必选 参数类型 描述 model_name 否 String 模型名称,可支持模糊匹配。 exact_match 否 Boolean 是否根据模型名称进行精准匹配。 model_version 否 String 模型版本。格式需为“数值:数值:数值”,其中数值为
ra.py”把lora模型合入unet和text-encoder模型。 数据类型不匹配问题如何处理? 报错“data type not equal”时,按照堆栈信息,将对应的行数的数据类型修改为匹配的类型。 图1 报错信息 处理该问题时,pipeline_onnx_stable_
04-x86_64.tgz。 宿主机安装的infiniband驱动版本为4.3-1.0.1.0,容器镜像中安装的infiniband驱动版本需要与宿主机版本匹配,即同为4.3-1.0.1.0。 可能部分区域的网卡较新,会出现更高版本的infiniband驱动版本,如果您遇到了infiniband驱
部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行install.sh文件,来安装依赖以及下载完整代码。 ECS中构建新镜像方案:在
部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行install.sh文件,来安装依赖以及下载完整代码。 ECS中构建新镜像方案:在