检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
分布进行采样或者计算。 n 否 Integer 表示对每个问题生成多少条答案。 最小值:1 最大值:2 缺省值:1 说明: 流式只能传1,非流式时可传1和2。 因为这个参数会产生很多条答案,n设置较大时,会很快消耗完tokens的配额。请谨慎使用,并确保对max_tokens进行了合理的设置。
知识库”页面,单击所需知识库,进入知识库基本信息页面,单击右上角“命中测试”。 在文本框中输入问题,单击“命中测试”,页面下方将展示多条匹配的内容,并按照匹配分值降序排列。 用户可以根据分值与匹配到的信息数量来评估当前知识库是否满足需求。 单击“查看历史”,可以查看用户输入的历史问题。 父主题: 创建与管理知识库
3308 The accessed API does not match the existing API. 访问的API与已开通的API服务不匹配。 请确认调用的API是否填写错误。 PANGU.3315 The accessed API's model instance is not
"⑧|⑻|㊇|⒏|⓼|➑|❽|➇"} {"9.": "⑨|⑼|㊈|⒐|⓽|➒|❾|➈"} {"10.": "⑩|⑽|㊉|⒑|⓾|➓|❿|➉"} 自定义正则替换 数据条目不变下,使用自定义正则表达式替换文本内容。 示例如下: 去除“参考文献”以及之后的内容:\n参考文献[\s\S]* 针对pdf的内容,去除“0
提示词应用示例 应用提示词实现智能客服系统的意图匹配 应用提示词生成面试题目 父主题: 提示词写作实践
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
说,若实际场景相对简单和通用,使用几千条数据即可;若场景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数据需要尽可能覆盖产品所提供的功能;数据需要覆盖难易度、长短度,包含参数丰富等场景;数据在长短、扁平与深层嵌套、对接客户api接口数量上全覆盖。
图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。 图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。
URL协议只支持HTTP和HTTPS。 系统会校验URL地址是否为标准的URL格式。 URL对应的IP默认不应为内网,否则会导致注册失败。仅在非商用环境部署时,才允许支持内网URL,且需要通过相关的服务的启动配置项关闭内网屏蔽。 请求方法 插件服务的请求方式,POST或GET。 鉴权校验
模块。当前支持订购NLP大模型、CV大模型、预测大模型、科学计算大模型和专业大模型的模型资产。 数据资源:数据通算单元适用于数据加工,用于正则类算子加工、数据智算单元适用于数据加工,用于AI类算子加工,数据托管单元适用于数据工程,用于存储数据集。 训练资源:训练单元可用于所有大模型的模型训练、模型压缩功能。
精准率和召回率的调和平均数,数值越高,表明模型性能越好。 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。
表面Loss。取值范围:(0.05, 10)。 正则化参数 路径删除概率 用于定义路径删除机制中的删除概率。路径删除是一种正则化技术,它在训练过程中随机删除一部分的网络连接,以防止模型过拟合。这个值越大,删除的路径越多,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1)。
定企业或个人所拥有的数据,通常包含了领域特定的知识。将大模型与私域知识进行结合,将发挥巨大价值。私域知识从数据形态上又可以分为非结构化与结构化数据。对于非结构化数据,如文档,可以利用大模型+外挂检索库(如Elastic Search)的方式快速实现问答系统,称为检索增强生成(Retrieval
确保业务需求对接 不同业务场景和模型应用对数据有不同的要求。数据加工能够根据特定业务需求进行定制化处理,确保数据满足应用场景的需求,从而提高数据和模型的匹配度,提升业务决策和模型预测的准确性。 提升数据处理效率 通过平台提供的自动化加工功能,用户可以高效完成大规模数据的预处理工作,减少人工干预
[category1',category2', ...],// 所有类别名称的列表,每个类别对应一个 label,用于标注视频中的事件或动作。 'database': { 'video_name':{ // 训练集 train 测试集 test。
计为2个token:“over”、“weight”。在中文中,有些汉字会根据语义被整合,如“等于”、“王者荣耀”。 在盘古大模型中,以N1系列模型为例,盘古1token≈0.75个英文单词,1token≈1.5汉字。不同模型的具体情况详见表1。 表1 token比 模型规格 token比(token/英文单词)
先检查模板占位符与输入是否匹配,若仍无法解决,请联系客服解决。 101654 消息组件执行失败。 请联系客服解决。 101655 消息组件异步执行失败。 请联系客服解决。 意图识别节点 101098 意图识别prompt模板请求失败。 检查模板占位符与输入是否匹配。 101097 意图
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。
2024年11月发布的版本,仅支持32K序列长度推理部署。 表2 Token转换比 模型规格 Token比(Token/英文单词) Token比(Token/汉字) N1 0.75 1.5 N2 0.88 1.24 N4 0.75 1.5 针对Token转换比,平台提供了Token计算器功能,可以根