检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下载方式:选择“ModelArts数据集”。 图1 下载数据集 目标区域:华北-北京四。 数据类型:系统会根据您的数据集,匹配到相应的数据类型。例如本案例使用的数据集,系统匹配为“图片”类型。 数据集输出位置:用来存放输出的数据标注的相关信息,或版本发布生成的Manifest文件等。单击图
connect to host xxx.pem port xxxxx: Connection refused”如何解决? 问题现象 原因分析 实例处于非运行状态。 解决方法 请前往ModelArts控制台查看实例是否处于运行状态,如果实例已停止,请执行启动操作,如果实例处于其他状态比如“错误
进入“下载详情”页面,填写以下参数。 下载方式:ModelArts数据集。 目标区域:华北-北京四。 数据类型:系统会根据您的数据集,匹配到相应的数据类型。例如本案例使用的数据集,系统匹配为“图片”类型。 数据集输入位置:用来存放源数据集信息,例如本案例中从Gallery下载的数据集。单击图标选择您的
进入“下载详情”页面,填写以下参数。 下载方式:ModelArts数据集。 目标区域:华北-北京四。 数据类型:系统会根据您的数据集,匹配到相应的数据类型。例如本案例使用的数据集,系统匹配为“图片”类型。 数据集输入位置:用来存放源数据集信息,例如本案例中从Gallery下载的数据集。单击图标选择您的
由于案例中需要下载商用版CANN,因此本案例仅面向有下载权限的渠道用户,非渠道用户建议参考其他自定义镜像制作教程。 Mindspore版本与CANN版本,CANN版本与Ascend驱动/固件版本均有严格的匹配关系,版本不匹配会导致训练失败。 前提条件 已注册华为账号并开通华为云,且在使用
需要对应的数据库名、表名以及用户名和密码。所导入表的schema(列名和类型)需要跟数据集相同。DWS的详细功能说明,请参考DWS用户指南。 图1 从DWS导入数据 集群名称:系统自动将当前账号下的DWS集群展现在列表中,您可以在下拉框中选择您所需的DWS集群。 数据库名称:根据
不支持带有分词符的字符串搜索(当前默认分词符有 ,'";=()[]{}@&<>/:\n\t\r)。 支持关键词精确搜索。关键词指相邻两个分词符之间的单词。 支持关键词模糊匹配搜索,例如输入“error”或“er?or”或“rro*”或“er*r”。 支持短语精确搜索。例如输入“Start to refresh”。
时依赖仅在实际部署时拉取。当单个模型文件大小超过5GB时,必须配置“动态加载”。 “AI引擎” 元模型使用的推理引擎,选择训练作业后会自动匹配。 “运行时依赖” 罗列选中模型对环境的依赖。例如依赖“tensorflow”,安装方式为“pip”,其版本必须为1.8.0及以上版本。 “模型说明”
进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显
进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显
进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显
进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化、per-tensor+per-head静态量化以及per-token,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。
non-quantized weight. config.json中多出quantization_config字段,请检查是否为非量化权重。 检查权重和模型模板是否匹配。 Key fields describing the model structure are missing from
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。