检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比
编辑。单击操作列的“编辑”,可以修改模型的训练参数、训练数据以及基本信息等。 克隆。单击操作列的“更多 > 克隆”,参照创建科学计算大模型训练任务填写参数,可以复制当前训练任务。 停止。单击操作列的“更多 > 停止”,可以停止处于“排队中”或“运行中”状态的任务。 重试。单击操作列的“更多 > 重试”,可以重试处于“失败”状态的节点,重试该节点的训练。
理解人类语言的基本结构。 微调 关注专业性:微调是对预训练模型的参数进行调整,使其在特定任务中达到更高的精度和效果。微调的核心在于利用少量的特定任务数据,使模型的表现从通用性向具体任务需求过渡。 使用小规模的特定任务数据:微调通常需要小规模但高质量的标注数据,直接与目标任务相关。
“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或
Studio大模型开发平台的空间资产中,包括数据和模型两类资产。这些资产为用户提供了集中管理和高效操作的基础,便于用户实现统一查看和操作管理。 数据资产:用户已发布的数据集将作为数据资产存放在空间资产中。用户可以查看数据集的详细信息,包括数据格式、大小、配比比例等。同时,平台支持数据集的删除等管理
理任务,可能需要大量的文本数据;如果是计算机视觉任务,则需要图像或视频数据。 数据预处理:数据预处理是数据准备过程中的重要环节,旨在提高数据质量和适应模型的需求。常见的数据预处理操作包括: 去除重复数据:确保数据集中每条数据的唯一性。 填补缺失值:填充数据中的缺失部分,常用方法包括均值填充、中位数填充或删除缺失数据。
可以选择新要素进行训练。请注意,所选的数据集必须包含您想要添加的新要素。此外,您还可以通过训练更改所有的模型参数,以优化模型性能。 微调:微调是将新数据应用于已有模型的过程。它适用于不改变模型结构参数和引入新要素的情况。如果您有新的观测数据,可以使用微调来更新模型的权重,以适应新数据。
续费 包周期服务到期后,您可以通过手动续费来延长服务的有效期。 包周期服务到期后,如果在保留期结束前未完成续费,后续则不能再对已过保留期的服务进行续费操作,需重新购买对应的服务。
如何查看预置模型的历史版本 ModelArts Studio平台支持查看预置模型的多个历史版本,并提供对历史版本进行训练等操作的功能。您还可以查看每个版本的操作记录、状态以及其他基础信息。 要查看预置模型的历史版本,您可以按照以下步骤操作: 进入平台的“空间资产 > 模型 > 预置”页面。
操作。 加工数据集 加工数据集 通过专用的加工算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数据集使用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。 合成数据集 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成新数据。该过程能够
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,
“训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学
地说明这些技巧在提示工程中的应用。随着模型的进化和理解能力的提升,尽管在简单任务中模糊的指示也会取得较好的效果,但对于规则越复杂的任务,越需要应用这些技巧来输出一个逻辑自洽、清晰明了的指令。 提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
打开反思开关的参数,独立调用大模型进行反思并修正当前提取的结果。 引用插件:支持导入已有插件的参数信息。 模型配置 模型选择 选择已部署的模型。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值,核采样值可以限制模型选择这些高概率的词汇,从而控
景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。此外,若可预见实际场景会不断发生变化,建议您定期更新训练数据,对模型进行微调更新。 父主题: 大模型微调训练类
查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。
模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:如果微调
模型微调超参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:如果微调