检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据集所在OBS路径 自监督训练数据集 创建数据集时,需要指定数据文件所在的文件夹。 有监督微调数据集 创建数据集时,可以指定数据文件或者数据文件所在的文件夹。 评测数据集 创建数据集时,可以指定数据文件或者数据文件所在的文件夹。 基本信息 填写数据集名称与描述,选择行业、语言和数据标签。 图9 填写基本信息
创建模型评估数据集 在收集评估数据集时,应确保数据集的独立性和随机性,并使其能够代表现实世界的样本数据,以避免对评估结果产生偏差。对评估数据集进行分析,可以帮助了解模型在不同情境下的表现,从而得到模型的优化方向。 在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。
模型训练所需数据量与数据格式要求 盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1G
创建数据集清洗任务 数据集创建完成后,可以使用数据清洗功能,对异常数据进行清理,或进行数据转换、过滤和去重等操作。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,单击界面右上角“创建任务”。 图1 数据清洗 依据需要清洗的数据类型,选择对应的数据集和数据集
获取数据清洗模板 在清洗数据时,用户可以通过组合不同的数据清洗算子来实现数据清洗功能。平台提供了多种数据清洗模板,用户可以直接套用这些模板进行数据清洗。 数据清洗模板获取方式如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,进入“清洗模板”页面,在该页面查看预置的数据清洗模板。
训练数据集创建流程 数据是大模型训练的基础,提供了模型学习所需的知识和信息。大模型通过对大量数据的学习,能够理解并抽象出其中的复杂模式,从而进行精准的预测和决策。在训练过程中,数据的质量和多样性至关重要。高质量的数据能够提升模型对任务的理解,而多样化的数据则帮助模型更好地应对各种
发布数据集 刚创建的数据集在未发布状态下,无法应用于模型训练,数据集创建、清洗完成后需要执行“发布”操作才可以将该数据集用于后续的任务中。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,在“我的数据集”页签找到未发布的数据集,单击操作列“版本发布”执行发布数据集操作。
数据保护技术 盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数
检测数据集质量 数据集创建成功后,平台将对数据集中的数据进行质量校验,并给出健康度评分、合规度评分与数据长度分布。 检测数据集质量 在“数据工程 > 数据管理”页面,选择“我的数据集”或者“训练数据集”页签。 单击数据集名称,进入数据集详情页,查看详细的数据质量。 其中,数据长度
数据量很少,可以微调吗 不同规格的模型对微调的数据量都有相应要求。 如果您准备用于微调的数据量很少,无法满足最小的量级要求,那么不建议您直接使用该数据进行微调,否则可能会存在如下问题: 过拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
式过滤脏数据。 数据增强:您可以通过一些规则来提升数据的多样性,比如:同义词替换、语法结构修改、标点符号替换等,保证数据的多样性。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取目标场景的数据,以此提升数据质量。一个比较常见的方法是,
创建一个训练数据集 训练数据集是用于模型训练的实际数据集。通常,通过创建一个新的数据集步骤,可以生成包含某个特定场景数据的数据集。例如,这个数据集可能只包含用于训练摘要提取功能的数据。然而,在实际模型训练中,通常需要结合多种任务类型的数据,而不仅限于单一场景的数据。因此,实际的训练会混
数据量满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 典型训练问题和优化策略
Cache Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,这样当需要访问这些数据时,就不用再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 对LLM使用缓存: LLM llm = LLMs.of(LLMs.PANGU, llmConfig);
有问题。即使您的目标场景依赖垂域背景知识,微调也并非最佳方案,比如: 场景微调的数据量很少或者数据质量很差:微调对数据量和数据质量有很高的要求,需要使用高质量的数据进行模型训练。 垂域知识问答场景:通用模型本身已经具有在给定的一段或几段段落知识的场景下进行总结回答的能力。因此,如
组装为有监督数据。使用模型构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性。建议将不同文本构建为不同的场景,甚至将同一段文本构建为多个不同的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。
清洗数据集(可选) 清洗算子功能介绍 获取数据清洗模板 创建数据集清洗任务 父主题: 准备盘古大模型训练数据集
的情绪和语气,调整回答的语调和内容,更贴近用户的实际需求。这种智能化、个性化的服务体验不仅减少了转人工的频率,还提升了用户满意度。 创意营销 在创意营销领域,企业常常需要投入大量的时间和资源来撰写吸引人的营销文案。然而,传统的人工撰写方式不仅效率低下,还受到写手个人素质的影响。盘
为什么微调后的模型,回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训