检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用区构建。华为云区域提供多个在物理上独立且隔离的可用区,这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。
VOC格式说明 字段 是否必选 说明 folder 是 表示数据源所在目录。 filename 是 被标注文件的文件名。 size 是 表示图像的像素信息。 width:必选字段,图片的宽度。 height:必选字段,图片的高度。 depth:必选字段,图片的通道数。 segmented
建议仅在开发调测场景使用。 UNKNOWN: 未明确设置的镜像支持的服务类型。 sort_dir 否 String 排序方式,ASC升序,DESC降序,默认DESC。 sort_key 否 String 排序的字段,多个字段使用(“,”)逗号分割。 type 否 String 镜像类型。枚举值如下:
解决方法: 通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name}
图2 volcano资源争抢 解决方法: 通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system
参数相关的配置使用Placeholder对象来表示,以占位符的形式实现用户数据运行时配置的能力,当前支持的数据类型包括:int、str、bool、float、Enum、dict、list。开发者可根据场景需要,将节点中的相关字段(如算法超参)通过Placeholder的形式透出,支持设置默认值,供用户修改配置使用。
Boxes 横坐标:目标框的面积占比,即目标框的面积占整个图片面积的比例,越大表示物体在图片中的占比越大。 纵坐标:框数量(统计所有图片中的框)。 主要判断模型中使用的anchor的分布,如果目标框普遍较大,anchor就可以选择较大。 按边缘化程度统计框数量的分布 Marginalization
tokenizing data. C error: Expected 4 field 原因分析 csv中文件的每一行的列数不相等。 处理方法 可以使用以下方法处理: 校验csv文件,将多出字段的行删除。 在代码中忽略错误行,参考如下: import pandas as pd pd.read_csv(filePath
请求消息头 附加请求头字段,如指定的URI和HTTP方法所要求的字段。例如定义消息体类型的请求头“Content-Type”,请求鉴权信息等。 需要添加到请求中的公共消息头如表3所示。 表3 公共请求消息头 参数名 说明 是否必选 示例 Content-type 消息体的类型(格式),默
用于训练的图片,至少有2种以上的分类,每种分类的图片数不少20张。 物体检测对数据集的要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。
查看当前GPU裸金属服务器的安全组的入方向规则的配置,发现仅开通了TCP协议的22端口。 ping命令是一种基于ICMP协议(Internet Control Message Protocol)的网络诊断工具,利用ICMP协议向目标主机发送数据包并接收返回的数据包来判断网络连接质量。当安全组的入方向
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
常使用。 调用查看授权列表接口查看用户的授权信息。 在管理用户授权时,可以调用删除授权接口删除指定用户的授权或者删除全量用户的授权。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。
ModelStep的输出 depend_steps=[job_step_1, job_step_2] # 依赖的作业类型节点对象 )# job_step是wf.steps.JobStep的 实例对象,train_url是wf.steps.JobOutput的name字段值 workflow
给子账号配置文件夹级的SFS Turbo访问权限 场景描述 本文介绍如何配置文件夹级的SFS Turbo访问权限,实现在ModelArts中访问挂载的SFS Turbo时,只允许子账号访问特定的SFS Turbo文件夹内容。 给子账号配置文件夹级的SFS Turbo访问权限为白名
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生成对某些特定的
被标注文件的文件名。 size 是 表示图像的像素信息。 width:必选字段,图片的宽度。 height:必选字段,图片的高度。 depth:必选字段,图片的通道数。 segmented 是 表示是否用于分割。 object 是 表示物体检测信息,多个物体标注会有多个object体。
error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String 调用失败时的错误码,具体请参见错误码,调用成功时无此字段。 error_solution String 调用失败时的提示解决信息,调用成功时无此字段。 父主题: 训练作业
长度限制为64字符 是 str title 节点的标题信息,主要用于在DAG中的展示,如果该字段未填写,则默认使用name进行展示 否 str step_type 节点的类型,决定了节点的功能 是 enum inputs 节点的输入列表 否 AbstractInput或者list[AbstractInput]