检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
OBS目录中的文件创建训练作业。如果选择通过数据集作为训练任务的数据源,则需要指定数据集及特定的版本。因此,用户需要为准备好的数据发布一个版本,具体操作参考发布ModelArts数据集中的数据版本。 为了便于后期的模型构建和开发,对同一数据源来说,将其不同时间对数据的处理和标注按
json文件中的status字段的值在训练脚本启动时,并不一定为completed状态。因此需要训练脚本等待status字段的值等于completed之后,再去读取文件的剩余内容。 通过训练脚本,可以使用模板一格式的jobstart_hccl.json文件,在等待status字段的值等于
处理后删除的图片数量。 description String 数据处理任务的版本描述。 duration_seconds Integer 数据处理任务的运行时间,单位秒。 inputs Array of ProcessorDataSource objects 数据处理任务的输入通道。
如何判断训练作业资源利用率高低 在模型训练的训练作业列表页可以查看作业资源利用率情况。当作业worker-0实例的GPU/NPU的平均利用率低于50%时,在训练作业列表中会进行告警提示。 图2 作业列表显示作业资源利用率情况 此处的作业资源利用率只涉及GPU和NPU资源。作业worker-0实例的GPU/NP
分页查询到的团队标注任务列表。 表4 WorkforceTask 参数 参数类型 描述 auto_sync_dataset Boolean 团队标注任务的标注结果是否自动同步至数据集。可选值如下: true:团队标注任务的标注结果自动同步至数据集 false:团队标注任务的标注结果不自动同步至数据集
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
E表示作业的配置文件路径,如果不指定该参数,则表示配置文件为空。配置文件是一个YAML格式的文件,里面的参数就是命令的option参数。此外,如果用户在命令行中同时指定YAML_FILE配置文件和option参数,命令行中指定的option参数的值将会覆盖配置文件相同的值。 命令参数预览
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。DeepSp
训练场景主要查看自研的依赖包是否正常,查看pip list是否包含所需的包,查看容器直接调用的python是否是自己所需要的那个(如果容器镜像装了多个python,需要设置python路径的环境变量)。 测试训练启动脚本。 优先使用手工进行数据复制的工作并验证 一般在镜像里不包含训练所用的数据和
创建AI应用时,如果是从OBS中导入元模型,则需要符合一定的模型包规范。 模型包规范适用于单模型场景,如果是多模型场景(例如含有多个模型文件)推荐使用自定义镜像方式。 ModelArts推理平台不支持的AI引擎,推荐使用自定义镜像方式。 请参考创建AI应用的自定义镜像规范和从0-1制作自定义镜像并创建AI应用,制作自定义镜像。
servers”字段,新增对应的key-value键值对即可。 适配JupyterLab访问地址。 在左侧导航打开“ vi /home/ma-user/work/grf/grafana-9.1.6/conf/defaults.ini”文件。 修改[server]中的“root_ur
String 引擎规格的ID。如“caffe-1.0.0-python2.7”。 engine_name String 引擎规格的名称。如“Caffe”。 engine_version String 引擎规格的版本。对一个引擎名称,有多个版本的引擎,如使用python2.7的"Caffe-1
方式二(新增标签):在“标签”下方的文本框中,在快捷键下拉列表中选择快捷键,然后在标签文本输入框中输入新的标签名称,然后单击“确定”。 选中的音频将被自动移动至“已标注”页签,且在“未标注”页签中,标签的信息也将随着标注步骤进行更新,如增加的标签名称、各标签对应的音频数量。 快捷键的使用说明:为标签
保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果,图像分类项目中,至少有两种以上的分类,每种分类的样本不少于20张。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。
动态分档模型转换(可选) 如果迁移的模型有多个shape档位的需求,可以通过如下方式对模型进行分档转换。 动态分档是指将模型输入的某一维或者某几维设置为“动态”可变,但是需要提前设置可变维度的“档位”范围。即转换得到的模型能够在指定的动态轴上使用预设的几种shape(保证模型支持的shape),相
转换关键参数准备 对应的模型转换成MindIR格式,通过后端绑定的编译形式来运行以达到更好的性能(类似静态图的运行模式),所以需要提前准备以下几个重点参数。 输入的inputShape,包含batch信息。 MSLite涉及到编译优化的过程,不支持完全动态的权重模式,需要在转换时确定对应的inp
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
添加了此标签的图片,都将被标注为新的标签名称。 删除标签:单击操作列“删除”,之前添加了此标签的图片,都将删除此标签。 图3 标签管理 图4 全部标签的信息 单击标注作业操作列的“标签”,可跳转至标签管理页。 单击操作列的“修改”,即可完成标签的修改。 单击操作列的“删除”,即可删除该标签。
权重百分比,分配到此模型的流量权重,仅当infer_type为real-time时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 specification