检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
服务状态一直处于“部署中” 问题现象 服务状态一直处于“部署中”,查看模型日志未发现服务有明显错误。 原因分析 一般情况都是模型的端口配置有问题。建议您首先检查创建模型的端口是否正确。 处理方法 模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。
订阅的模型一直处于等待同步状态 问题现象 订阅的模型一直处于等待同步状态。 原因分析 订阅的模型一直处于等待同步状态,可能原因如下: 由于ModelArts的数据存储、模型导入以及部署上线等功能依赖OBS、SWR等服务,需获取依赖服务的授权后,才能正常使用ModelArts的相关功能。
“~/ascend/log/device-{device-id}/device-{pid}_{timestamp}.log” 其中,pid是HOST侧用户进程号。 样例: device-166_20220718191853764.log plog日志 HOST侧用户进程,在HOST侧产生的日志(例如:ACL /GE)。
欠费后,ModelArts的资源是否会被删除? ModelArts Standard数据管理相关计费FAQ ModelArts Standard自动学习所创建项目一直在扣费,如何停止计费? ModelArts Standard训练作业和模型部署如何收费?
资源池推理服务一直初始化中如何解决 问题现象 创建资源池时作业类型选择了推理服务,资源池创建成功后推理一直显示“环境初始化。 原因分析 专属池网段和推理微服务dispatcher网段冲突,导致专属池上的VPCEP终端节点无法创建,该region无法使用此网段创建包含推理服务的资源池。
查看堆栈。py-spy工具的具体使用方法可参考py-spy官方文档。 # 找到训练进程的PID ps -ef # 查看进程12345的进程堆栈 # 如果是8卡的训练作业,一般用此命令依次去查看主进程起的对应的8个进程的堆栈情况 py-spy dump --pid 12345 父主题: 管理模型训练作业
创建Notebook失败,查看事件显示JupyterProcessKilled。 图1 查看事件 原因分析 出现此故障是因为Jupyter进程被清理掉了,一般情况Notebook会自动重启的,如果没有自动重启,创建一直失败,请确认是否是自定义镜像的问题。 解决方案 排查是否是自定义镜像的问题。
mitId 关闭VS Code,重新从Notebook实例列表页面打开VS Code(注意:需要关闭本地vscode,否则可能会报多个安装进程正在运行中)。 父主题: VS Code连接开发环境失败故障处理
用户结束kernelgateway进程后报错Server Connection Error,如何恢复? 问题现象 当kernelgateway进程被结束后,出现如下报错,以及选不到Kernel。 图1 报错Server Connection Error截图 图2 选不到Kernel
使用自定义镜像创建的训练作业一直处于运行中 问题现象 使用自定义镜像创建训练作业,训练作业的“状态”一直处于“运行中”。 原因分析及处理办法 日志打印如下内容,表示自定义镜像的CPU架构与资源池节点的CPU架构不一致。 standard_init_linux.go:215: exec
日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业进程异常退出 训练作业进程被kill 父主题: 训练作业
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP