检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
支持FP16和BF16数据类型推理。 适配的CANN版本是cann_8.0.rc3。 Server驱动版本要求23.0.6。 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Server。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 如果使用Server资源,请参考Lite
旨在通过限制新策略和旧策略之间的差异来稳定训练过程。PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它
task") 参数说明 表1 请求参数 参数 是否必选 参数类型 描述 name 否 String 版本名称,必须是中文、字母、数字、下划线或中划线组成的合法字符串,长度为1-32位。 version_format 否 String 数据集版本格式。可选值如下: Default:默认格式
便让显卡驱动正常工作。 通常情况下,在安装NVIDIA驱动时,会自动执行“nvidia-modprobe”命令,将必要的内核模块加载到系统中。但有时候也可能需要手动执行该命令。例如,在更新了NVIDIA驱动后,需要重新加载新版本的内核模块才能使变更生效。 此外,如果使用了多个NV
个或几个亲和算子组合的形式,代替原有GPU的实现方式,具体逻辑模型请参考PyTorch自动迁移。 在PyTorch模型迁移后进行训练的过程中,CPU只负责算子的下发,而NPU负责算子的执行,算子下发和执行异步发生,性能瓶颈在此过程中体现。在PyTorch的动态图机制下,算子被CP
整个迁移过程并非是完全平替,GPU在灵活性上有其独特的优势,而NPU上的执行目前还是依赖于算子的下发,对于NPU构造的理解是昇腾训练迁移中必备的知识,只有对于昇腾有基础理解,配合一些诊断工具,面对复杂问题时,才能进行进一步诊断与定位,进而发挥NPU的能力。 性能调优可以先将重点
本文档适配昇腾云ModelArts 6.3.909版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 本文档中的模型运行环境是ModelArts Lite Cluster。 本文档中的CCE集群版本选择v1.27~1.28。版本使用的容器引擎为Containerd。 镜像适配的Cann版本是cann_8
CPU规格的机器上,因此上层docker镜像也都是ARM镜像。相对于GPU场景的镜像中安装了与GPU驱动适配的CUDA(由英伟达推出的统一计算架构)计算库,Ascend-Powered-Engine引擎的镜像中安装了与Ascend驱动适配的CANN(华为针对AI场景推出的异构计算架构)计算库。
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox
binary=True), np.uint8), cv2.IMREAD_COLOR) 将一个不支持OBS路径的API改造成支持OBS路径的API pandas中对h5的文件读写to_hdf和read_hdf既不支持OBS路径,也不支持输入一个文件对象,考虑以下代码会出现错误。 1 2 3 4 import
约束限制 本文档适配昇腾云ModelArts 6.3.908版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 本文档中的模型运行环境是ModelArts Lite Server。 镜像适配的Cann版本是cann_8.0.rc3。 Server驱动版本要求23
frequency_penalty会根据当前生成的文本中各个词语的出现频率进行奖惩。取值范围[-2.0,2.0]。 length_penalty 否 1.0 Float length_penalty表示在beam search过程中,对于较长的序列,模型会给予较大的惩罚。 如果要使用
大幅度降低了模型开发门槛。 充足澎湃算力,最佳实践算力推荐方案,提升实践效率和成本 AI Gallery深谙开发者在人工智能项目推进过程中面临的实际困难,尤其是高昂的模型训练与部署成本,这往往成为创意落地的阻碍。通过大量开发者实践,针对主流昇腾云开源大模型,沉淀最佳的算力组合方
String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 表2 get_job_log请求参数说明 参数 是否必选 参数类型 描述 task_id 否 String 要查看哪个工作节点的日志
安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containe
list_datasets(session, dataset_type=0) print(dataset_list) 示例三:根据数据集名称查询数据集列表 # 查询名称中包含dataset的数据集列表 dataset_list = Dataset.list_datasets(session, dataset_name="dataset")
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是i
约束限制 本文档适配昇腾云ModelArts 6.3.905版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 本文档中的模型运行环境是ModelArts Lite Server。 镜像适配的Cann版本是cann_8.0.rc2。 确保容器可以访问公网。 训练支持的模型列表
Spark应用每个Executor的CPU核数。该配置项会替换sc_type中对应的默认参数。 -em / --executor-memory String 否 Spark应用的Executor内存,参数配置例如2G,2048M。该配置项会替换“sc_type”中对应的默认参数,使用时必须带单位,否则会启动失败。